IDEAS home Printed from https://ideas.repec.org/a/spr/aphecp/v19y2021i5d10.1007_s40258-021-00659-z.html
   My bibliography  Save this article

A Systematic Review of the Costs Relating to Non-pharmaceutical Interventions Against Infectious Disease Outbreaks

Author

Listed:
  • Janetta E. Skarp

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Laura E. Downey

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA)
    Imperial College London)

  • Julius W. E. Ohrnberger

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Lucia Cilloni

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Alexandra B. Hogan

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Abagael L. Sykes

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Susannah S. Wang

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Hiral Anil Shah

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Mimi Xiao

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

  • Katharina Hauck

    (Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA))

Abstract

Background Non-pharmaceutical interventions (NPIs) are the cornerstone of infectious disease outbreak response in the absence of effective pharmaceutical interventions. Outbreak strategies often involve combinations of NPIs that may change according to disease prevalence and population response. Little is known with regard to how costly each NPI is to implement. This information is essential to inform policy decisions for outbreak response. Objective To address this gap in existing literature, we conducted a systematic review on outbreak costings and simulation studies related to a number of NPI strategies, including isolating infected individuals, contact tracing and quarantine, and school closures. Methods Our search covered the MEDLINE and EMBASE databases, studies published between 1990 and 24 March 2020 were included. We included studies containing cost data for our NPIs of interest in pandemic, epidemic, and outbreak response scenarios. Results We identified 61 relevant studies. There was substantial heterogeneity in the cost components recorded for NPIs in outbreak costing studies. The direct costs of NPIs for which costing studies existed also ranged widely: isolating infected individuals per case: US$141.18 to US$1042.68 (2020 values), tracing and quarantine of contacts per contact: US$40.73 to US$93.59, social distancing: US$33.76 to US$167.92, personal protection and hygiene: US$0.15 to US$895.60. Conclusion While there are gaps and heterogeneity in available cost data, the findings of this review and the collated cost database serve as an important resource for evidence-based decision-making for estimating costs pertaining to NPI implementation in future outbreak response policies.

Suggested Citation

  • Janetta E. Skarp & Laura E. Downey & Julius W. E. Ohrnberger & Lucia Cilloni & Alexandra B. Hogan & Abagael L. Sykes & Susannah S. Wang & Hiral Anil Shah & Mimi Xiao & Katharina Hauck, 2021. "A Systematic Review of the Costs Relating to Non-pharmaceutical Interventions Against Infectious Disease Outbreaks," Applied Health Economics and Health Policy, Springer, vol. 19(5), pages 673-697, September.
  • Handle: RePEc:spr:aphecp:v:19:y:2021:i:5:d:10.1007_s40258-021-00659-z
    DOI: 10.1007/s40258-021-00659-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40258-021-00659-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40258-021-00659-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy C Reluga, 2010. "Game Theory of Social Distancing in Response to an Epidemic," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
    2. Demirguc-Kunt,Asli & Lokshin,Michael M. & Torre,Ivan, 2020. "The Sooner, the Better : The Early Economic Impact of Non-Pharmaceutical Interventions during the COVID-19 Pandemic," Policy Research Working Paper Series 9257, The World Bank.
    3. Caroline Orset, 2018. "People’s perception and cost-effectiveness of home confinement during an influenza pandemic: evidence from the French case," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1335-1350, December.
    4. Smith, Richard D. & Keogh-Brown, Marcus R. & Barnett, Tony, 2011. "Estimating the economic impact of pandemic influenza: An application of the computable general equilibrium model to the UK," Social Science & Medicine, Elsevier, vol. 73(2), pages 235-244, July.
    5. George J Milne & Nilimesh Halder & Joel K Kelso, 2013. "The Cost Effectiveness of Pandemic Influenza Interventions: A Pandemic Severity Based Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter A.G. van Bergeijk, 2021. "Pandemic Economics," Books, Edward Elgar Publishing, number 20401.
    2. Hafner, Marco & Yerushalmi, Erez & Andersson, Fredrik L. & Burtea, Teodor, 2020. "Quantifying the macroeconomic cost of night-time bathroom visits: an application to the UK," CAFE Working Papers 5, Centre for Accountancy, Finance and Economics (CAFE), Birmingham City Business School, Birmingham City University.
    3. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    4. Davide Furceri & Siddharth Kothari & Longmei Zhang, 2021. "The effects of COVID‐19 containment measures on the Asia‐Pacific region," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 469-497, October.
    5. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    6. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    7. Deriu, S. & Cassar, I.P. & Pretaroli, R. & Socci, C., 2022. "The economic impact of Covid-19 pandemic in Sardinia," Research in Transportation Economics, Elsevier, vol. 93(C).
    8. Correia, Sergio & Luck, Stephan & Verner, Emil, 2022. "Pandemics Depress the Economy, Public Health Interventions Do Not: Evidence from the 1918 Flu," The Journal of Economic History, Cambridge University Press, vol. 82(4), pages 917-957, December.
    9. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    10. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    11. Coast, Joanna, 2018. "A history that goes hand in hand: Reflections on the development of health economics and the role played by Social Science & Medicine, 1967–2017," Social Science & Medicine, Elsevier, vol. 196(C), pages 227-232.
    12. Mohler, George & Bertozzi, Andrea L. & Carter, Jeremy & Short, Martin B. & Sledge, Daniel & Tita, George E. & Uchida, Craig D. & Brantingham, P. Jeffrey, 2020. "Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis," Journal of Criminal Justice, Elsevier, vol. 68(C).
    13. Decerf, Benoit & Ferreira, Francisco H.G. & Mahler, Daniel G. & Sterck, Olivier, 2021. "Lives and livelihoods: Estimates of the global mortality and poverty effects of the Covid-19 pandemic," World Development, Elsevier, vol. 146(C).
    14. De Bruin, Kelly & Monaghan, Eoin & Yakut, Aykut Mert, 2020. "The environmental and economic impacts of the COVID-19 crisis on the Irish economy: An application of the I3E model," Research Series, Economic and Social Research Institute (ESRI), number RS106.
    15. Han, Dun & Sun, Mei, 2016. "An evolutionary vaccination game in the modified activity driven network by considering the closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 49-57.
    16. Caixia Wang & Huijie Li, 2022. "Public Compliance Matters in Evidence-Based Public Health Policy: Evidence from Evaluating Social Distancing in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
    17. Yunhan Huang & Tao Zhang & Quanyan Zhu, 2022. "The Inverse Problem of Linear-Quadratic Differential Games: When is a Control Strategies Profile Nash?," Papers 2207.05303, arXiv.org, revised Jul 2022.
    18. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    19. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aphecp:v:19:y:2021:i:5:d:10.1007_s40258-021-00659-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.