IDEAS home Printed from https://ideas.repec.org/a/spr/aphecp/v11y2013i4p319-329.html
   My bibliography  Save this article

Quantifying Benefit–Risk Preferences for Medical Interventions: An Overview of a Growing Empirical Literature

Author

Listed:
  • A. Brett Hauber
  • Angelyn Fairchild
  • F. Reed Johnson

Abstract

Decisions regarding the development, regulation, sale, and utilization of pharmaceutical and medical interventions require an evaluation of the balance between benefits and risks. Such evaluations are subject to two fundamental challenges—measuring the clinical effectiveness and harms associated with the treatment, and determining the relative importance of these different types of outcomes. In some ways, determining the willingness to accept treatment-related risks in exchange for treatment benefits is the greater challenge because it involves the individual subjective judgments of many decision makers, and these decision makers may draw different conclusions about the optimal balance between benefits and risks. In response to increasing demand for benefit–risk evaluations, researchers have applied a variety of existing welfare-theoretic preference methods for quantifying the tradeoffs decision makers are willing to accept among expected clinical benefits and risks. The methods used to elicit benefit–risk preferences have evolved from different theoretical backgrounds. To provide some structure to the literature that accommodates the range of approaches, we begin by describing a welfare-theoretic conceptual framework underlying the measurement of benefit–risk preferences in pharmaceutical and medical treatment decisions. We then review the major benefit–risk preference-elicitation methods in the empirical literature and provide a brief overview of the studies using each of these methods. The benefit–risk preference methods described in this overview fall into two broad categories: direct-elicitation methods and conjoint analysis. Rating scales (6 studies), threshold techniques (9 studies), and standard gamble (2 studies) are examples of direct elicitation methods. Conjoint analysis studies are categorized by the question format used in the study, including ranking (1 study), graded pairs (1 study), and discrete choice (21 studies). The number of studies reviewed here demonstrates that this body of research already is substantial, and it appears that the number of benefit–risk preference studies in the literature will continue to increase. In addition, benefit–risk preference-elicitation methods have been applied to a variety of healthcare decisions and medical interventions, including pharmaceuticals, medical devices, surgical and medical procedures, and diagnostics, as well as resource-allocation decisions such as facility placement. While preference-elicitation approaches may differ across studies, all of the studies described in this review can be used to provide quantitative measures of the tradeoffs patients and other decision makers are willing to make between benefits and risks of medical interventions. Eliciting and quantifying the preferences of decision makers allows for a formal, evidence-based consideration of decision-makers’ values that currently is lacking in regulatory decision making. Future research in this area should focus on two primary issues—developing best-practice standards for preference-elicitation studies and developing methods for combining stated preferences and clinical data in a manner that is both understandable and useful to regulatory agencies. Copyright Springer International Publishing Switzerland 2013

Suggested Citation

  • A. Brett Hauber & Angelyn Fairchild & F. Reed Johnson, 2013. "Quantifying Benefit–Risk Preferences for Medical Interventions: An Overview of a Growing Empirical Literature," Applied Health Economics and Health Policy, Springer, vol. 11(4), pages 319-329, August.
  • Handle: RePEc:spr:aphecp:v:11:y:2013:i:4:p:319-329
    DOI: 10.1007/s40258-013-0028-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40258-013-0028-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40258-013-0028-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caroline Vass & Dan Rigby & Kelly Tate & Andrew Stewart & Katherine Payne, 2018. "An Exploratory Application of Eye-Tracking Methods in a Discrete Choice Experiment," Medical Decision Making, , vol. 38(6), pages 658-672, August.
    2. Ellen M. Janssen & Jodi B. Segal & John F. P. Bridges, 2016. "A Framework for Instrument Development of a Choice Experiment: An Application to Type 2 Diabetes," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 9(5), pages 465-479, October.
    3. Angelyn Otteson Fairchild & Shelby D. Reed & Juan Marcos Gonzalez, 2023. "Method for Calculating the Simultaneous Maximum Acceptable Risk Threshold (SMART) from Discrete-Choice Experiment Benefit-Risk Studies," Medical Decision Making, , vol. 43(2), pages 227-238, February.
    4. Norah L. Crossnohere & Ryan Fischer & Elizabeth Vroom & Patricia Furlong & John F. P. Bridges, 2022. "A Comparison of Caregiver and Patient Preferences for Treating Duchenne Muscular Dystrophy," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 15(5), pages 577-588, September.
    5. Juan Marcos Gonzalez & Marco Boeri, 2021. "The Impact of the Risk Functional Form Assumptions on Maximum Acceptable Risk Measures," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(6), pages 827-836, November.
    6. Huls, Samare P.I. & de Bekker-Grob, Esther W., 2022. "Can healthcare choice be predicted using stated preference data? The role of model complexity in a discrete choice experiment about colorectal cancer screening," Social Science & Medicine, Elsevier, vol. 315(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aphecp:v:11:y:2013:i:4:p:319-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.