IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i6d10.1007_s40745-023-00510-3.html
   My bibliography  Save this article

Bayesian Structural Time Series Models for Predicting the $${\textrm{CO}}_2$$ CO 2 Emissions in Afghanistan

Author

Listed:
  • Sayed Rahmi Khuda Haqbin

    (Aligarh Muslim University)

  • Athar Ali Khan

    (Aligarh Muslim University)

Abstract

There are numerous forecasting methods, and these approaches take only data, analyse it, produce a prediction by analysing, ignore the prior information side, and do not take into account the variations that occur over time. The Bayesian structural time series (BSTS) models are the best way to forecast $${\textrm{CO}}_2$$ CO 2 emissions and is updated. Because $${\textrm{CO}}_2$$ CO 2 emissions play an essential part in climate change, forecasting future $${\textrm{CO}}_2$$ CO 2 emissions is critical for all countries where global warming is a hazard to the planet. This study models and forecasts $${\textrm{CO}}_2$$ CO 2 emissions in Afghanistan from 1990 to 2019 using the BSTS models, bsts function from the bsts R package statistical tool. We did a diagnostics test of the normality of the residuals out of the bsts R package. According to the findings for 12 years ahead, $${\textrm{CO}}_2$$ CO 2 emissions will rise by 2031 in all models findings. The study’s findings indicate that $${\textrm{CO}}_2$$ CO 2 emissions in Afghanistan are projected to rise, exposing the country to climate-related concerns.

Suggested Citation

  • Sayed Rahmi Khuda Haqbin & Athar Ali Khan, 2024. "Bayesian Structural Time Series Models for Predicting the $${\textrm{CO}}_2$$ CO 2 Emissions in Afghanistan," Annals of Data Science, Springer, vol. 11(6), pages 2235-2252, December.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:6:d:10.1007_s40745-023-00510-3
    DOI: 10.1007/s40745-023-00510-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00510-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00510-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Reza Lotfalipour & Mohammad Ali Falahi & Morteza Bastam, 2013. "Prediction of CO2 Emissions in Iran using Grey and ARIMA Models," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    2. Nyoni, Thabani & Mutongi, Chipo, 2019. "Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models," MPRA Paper 93984, University Library of Munich, Germany.
    3. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    5. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    6. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    7. Melina Dritsaki & Chaido Dritsaki, 2020. "Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity Models," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 411-423.
    8. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    9. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    10. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    11. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.
    12. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:6:d:10.1007_s40745-023-00510-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.