IDEAS home Printed from https://ideas.repec.org/a/spr/anresc/v73y2024i2d10.1007_s00168-024-01264-3.html
   My bibliography  Save this article

How does regional integration affect CO2 emission intensity? A natural experiment based on the expansion of the Yangtze River Delta, China

Author

Listed:
  • Kangjuan Lv

    (Shanghai University)

  • Yijing Fan

    (Shanghai University)

  • Yu Cheng

    (Shanghai University)

Abstract

Regional integration effectively promotes the coordinated development of the economy and society in urban agglomerations. However, existing studies have paid little attention to the effect of regional integration on low-carbon development. To address this research gap, this study takes the expansion of the Yangtze River Delta implemented in 2010 as a natural experiment to explore the impact of regional integration on carbon dioxide (CO2) emission intensity by applying the differences-in-differences approach. Then, the mediating effect and moderating effect models are employed to investigate the influencing mechanisms involved. The results reveal that regional integration is positively correlated with CO2 emission intensity. In other words, the rising degree of regional integration cannot facilitate carbon emission reduction in China. According to the mechanism analysis, regional integration will indirectly increase CO2 emission intensity by strengthening economic connections among cities, while regional integration significantly reduces CO2 emission intensity through improving technological innovation. Furthermore, the moderating effect of industrial structure upgrading appears trivial in the Yangtze River Delta as a whole. The rationale is that the incumbent cities may optimize their industrial structure by transferring energy-intensive and high-polluting industries to the newly added cities. Finally, based on the above findings, this study offers several solid policy implications for promoting coordinated environmental governance.

Suggested Citation

  • Kangjuan Lv & Yijing Fan & Yu Cheng, 2024. "How does regional integration affect CO2 emission intensity? A natural experiment based on the expansion of the Yangtze River Delta, China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 73(2), pages 493-519, August.
  • Handle: RePEc:spr:anresc:v:73:y:2024:i:2:d:10.1007_s00168-024-01264-3
    DOI: 10.1007/s00168-024-01264-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00168-024-01264-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00168-024-01264-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tishler, Asher & Milstein, Irena, 2009. "R&D wars and the effects of innovation on the success and survivability of firms in oligopoly markets," International Journal of Industrial Organization, Elsevier, vol. 27(4), pages 519-531, July.
    2. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    3. Chen, Xudong & Huang, Bihong, 2016. "Club membership and transboundary pollution: Evidence from the European Union enlargement," Energy Economics, Elsevier, vol. 53(C), pages 230-237.
    4. Yulan Lv & Yumeng Pang & Buhari Doğan, 2022. "The role of Chinese fiscal decentralization in the governance of carbon emissions: perspectives from spatial effects decomposition and its heterogeneity," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 635-668, June.
    5. Ma, Shengnan, 2022. "Growth effects of economic integration: New evidence from the Belt and Road Initiative," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 753-767.
    6. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    7. Timo Baas & Herbert Br�cker, 2010. "Macroeconomic impact of Eastern enlargement on Germany and UK: evidence from a CGE model," Applied Economics Letters, Taylor & Francis Journals, vol. 17(2), pages 125-128, January.
    8. Yan, Bin & Wang, Feng & Dong, Mingru & Ren, Jing & Liu, Juan & Shan, Jing, 2022. "How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China," Economic Modelling, Elsevier, vol. 108(C).
    9. Cheng, Shulei & Fan, Wei & Zhang, Jian & Wang, Ning & Meng, Fanxin & Liu, Gengyuan, 2021. "Multi-sectoral determinants of carbon emission inequality in Chinese clustering cities," Energy, Elsevier, vol. 214(C).
    10. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    2. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    3. Dongsheng Yan & Pingxing Li, 2023. "Can Regional Integration Reduce Urban Carbon Emission? An Empirical Study Based on the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
    4. Sijia Li & Lihua Wu, 2024. "The impact of regional integration on PM2.5 concentrations—Quasi‐natural experimental evidence from city economic coordination committee," Growth and Change, Wiley Blackwell, vol. 55(3), September.
    5. Alhassan Abdul-Wakeel Karakara & Evans Osabuohien, 2020. "ICT adoption, competition and innovation of informal firms in West Africa: a comparative study of Ghana and Nigeria," Journal of Enterprising Communities: People and Places in the Global Economy, Emerald Group Publishing Limited, vol. 14(3), pages 397-414, June.
    6. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    7. Peng, Yue & Wang, Wei & Zhen, Shangsong & Liu, Yunqiang, 2024. "Does digitalization help green consumption? Empirical test based on the perspective of supply and demand of green products," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    8. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    9. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    10. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    11. Wiedner, Jonas & Giesecke, Johannes, 2022. "Immigrant Men’s Economic Adaptation in Changing Labor Markets: Why Gaps between Turkish and German Men Expanded, 1976–2015," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 56(1), pages 176-205.
    12. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    13. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    14. Jian Hao & Lin Chen & Na Zhang, 2022. "A Statistical Review of Considerations on the Implementation Path of China’s “Double Carbon” Goal," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    15. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    16. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    17. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    18. Gezi Chen & Zhenhua Hu & Shijin Xiang & Ailan Xu, 2024. "The Impact of Carbon Emissions Trading on the Total Factor Productivity of China’s Electric Power Enterprises—An Empirical Analysis Based on the Differences-in-Differences Model," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    19. Sijia Li & Lihua Wu, 2024. "Can regional integration promote industrial green transformation? Empirical evidence from Yangtze River Delta Urban Agglomeration," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(1), pages 117-134, March.
    20. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.

    More about this item

    JEL classification:

    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:anresc:v:73:y:2024:i:2:d:10.1007_s00168-024-01264-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.