IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v344y2025i2d10.1007_s10479-023-05456-6.html
   My bibliography  Save this article

N-list-enhanced heuristic for distributed three-stage assembly permutation flow shop scheduling

Author

Listed:
  • Kuo-Ching Ying

    (National Taipei University of Technology)

  • Pourya Pourhejazy

    (UiT—The Arctic University of Norway)

  • Po-Jui Fu

    (National Taipei University of Technology
    ASUSTeK Computer Inc)

Abstract

System-wide optimization of distributed manufacturing operations enables process improvement beyond the standalone and individual optimality norms. This study addresses the production planning of a distributed manufacturing system consisting of three stages: production of parts (subcomponents), assembly of components in Original Equipment Manufacturer (OEM) factories, and final assembly of products at the product manufacturer’s factory. Distributed Three Stage Assembly Permutation Flowshop Scheduling Problems (DTrSAPFSP) models this operational situation; it is the most recent development in the literature of distributed scheduling problems, which has seen very limited development for possible industrial applications. This research introduces a highly efficient constructive heuristic to contribute to the literature on DTrSAPFSP. Numerical experiments considering a comprehensive set of operational parameters are undertaken to evaluate the performance of the benchmark algorithms. It is shown that the N-list-enhanced Constructive Heuristic algorithm performs significantly better than the current best-performing algorithm and three new metaheuristics in terms of both solution quality and computational time. It can, therefore, be considered a competitive benchmark for future studies on distributed production scheduling and computing.

Suggested Citation

  • Kuo-Ching Ying & Pourya Pourhejazy & Po-Jui Fu, 2025. "N-list-enhanced heuristic for distributed three-stage assembly permutation flow shop scheduling," Annals of Operations Research, Springer, vol. 344(2), pages 759-792, January.
  • Handle: RePEc:spr:annopr:v:344:y:2025:i:2:d:10.1007_s10479-023-05456-6
    DOI: 10.1007/s10479-023-05456-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05456-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05456-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Deng & Ling Wang & Sheng-yao Wang & Xiao-long Zheng, 2016. "A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3561-3577, June.
    2. Chung-Yee Lee & T. C. E. Cheng & B. M. T. Lin, 1993. "Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem," Management Science, INFORMS, vol. 39(5), pages 616-625, May.
    3. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    3. Pourya Pourhejazy & Chen-Yang Cheng & Kuo-Ching Ying & Nguyen Hoai Nam, 2023. "Meta-Lamarckian-based iterated greedy for optimizing distributed two-stage assembly flowshops with mixed setups," Annals of Operations Research, Springer, vol. 322(1), pages 125-146, March.
    4. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    5. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    6. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
    7. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    8. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    9. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    10. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    11. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    12. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    13. Barry B. Barrios & Quim Castellà & Angel A. Juan & Manuel Mateo, 2015. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    14. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    15. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    16. Yu-Jun Zheng & Yi-Chen Du & Wei-Guo Sheng & Hai-Feng Ling, 2019. "Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature Reserves," Interfaces, INFORMS, vol. 49(5), pages 371-383, September.
    17. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    18. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    19. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    20. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:344:y:2025:i:2:d:10.1007_s10479-023-05456-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.