IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v343y2024i1d10.1007_s10479-024-06263-3.html
   My bibliography  Save this article

A generalized ASIP with arrivals to all sites and particle movements in all directions

Author

Listed:
  • Yaron Yeger

    (Tel Aviv University)

  • Uri Yechiali

    (Tel Aviv University)

Abstract

A generalized n-site Asymmetric Simple Inclusion Process (ASIP) network is studied, where gate-opening instants are determined by a renewal process and arrivals occur to all sites. Various types of batch particle movements between sites are analyzed: (i) unidirectional probabilistic forward movements; (ii) probabilistic forward movements combined with feedback to the first site; and (iii) general probabilistic multidirectional movements. In contrast to the tedious successive substitution method used in previous ASIP studies, an efficient matrix approach is applied to derive the multidimensional probability generating function (PGF) of site occupancies right after gate opening instants. The complexity of the ASIP processes allows us to obtain explicit PGF results for small-size networks only, while for larger networks, a formula to calculate the mean site occupancies is derived for all types of movements. In movement case (i) the means are directly and explicitly calculated. For movement case (ii), where the network is homogeneous with equal probabilities of forward movements from site i to downstream sites $$j \ge i$$ j ≥ i , we show that the ratio between the mean occupancies of consecutive sites approaches a constant when the network becomes large, and calculate this ratio. Finally, we investigate an n-site network where at gate opening instants all gates open simultaneously, and particles move in all directions. Numerical examples are presented.

Suggested Citation

  • Yaron Yeger & Uri Yechiali, 2024. "A generalized ASIP with arrivals to all sites and particle movements in all directions," Annals of Operations Research, Springer, vol. 343(1), pages 515-542, December.
  • Handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06263-3
    DOI: 10.1007/s10479-024-06263-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06263-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06263-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaron Yeger & Uri Yechiali, 2022. "Performance Measures in a Generalized Asymmetric Simple Inclusion Process," Mathematics, MDPI, vol. 10(4), pages 1-25, February.
    2. Onno Boxma & Offer Kella & Uri Yechiali, 2016. "An ASIP model with general gate opening intervals," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 1-20, October.
    3. James R. Jackson, 1957. "Networks of Waiting Lines," Operations Research, INFORMS, vol. 5(4), pages 518-521, August.
    4. Uri Yechiali & Yaron Yeger, 2022. "Matrix Approach for Analyzing n -Site Generalized ASIP Systems: PGF and Site Occupancy Probabilities," Mathematics, MDPI, vol. 10(23), pages 1-33, December.
    5. James R. Jackson, 1963. "Jobshop-Like Queueing Systems," Management Science, INFORMS, vol. 10(1), pages 131-142, October.
    6. Onno Boxma & Offer Kella & Uri Yechiali, 2021. "Workload distributions in ASIP queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 81-100, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uri Yechiali & Yaron Yeger, 2022. "Matrix Approach for Analyzing n -Site Generalized ASIP Systems: PGF and Site Occupancy Probabilities," Mathematics, MDPI, vol. 10(23), pages 1-33, December.
    2. Yaron Yeger & Uri Yechiali, 2022. "Performance Measures in a Generalized Asymmetric Simple Inclusion Process," Mathematics, MDPI, vol. 10(4), pages 1-25, February.
    3. Francisco Castro & Hamid Nazerzadeh & Chiwei Yan, 2020. "Matching queues with reneging: a product form solution," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 359-385, December.
    4. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    5. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    6. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    7. Sumi Kim & Seongmoon Kim, 2015. "Differentiated waiting time management according to patient class in an emergency care center using an open Jackson network integrated with pooling and prioritizing," Annals of Operations Research, Springer, vol. 230(1), pages 35-55, July.
    8. Haskose, A. & Kingsman, B. G. & Worthington, D, 2004. "Performance analysis of make-to-order manufacturing systems under different workload control regimes," International Journal of Production Economics, Elsevier, vol. 90(2), pages 169-186, July.
    9. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    10. Bretthauer, Kurt M., 1996. "Capacity planning in manufacturing and computer networks," European Journal of Operational Research, Elsevier, vol. 91(2), pages 386-394, June.
    11. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    12. Veneklaas, W. & Leeftink, A.G. & van Boekel, P.H.C.M. & Hans, E.W., 2021. "On the design, implementation, and feasibility of hospital admission services: The admission lounge case," Omega, Elsevier, vol. 100(C).
    13. van Dijk, N.M. & van der Sluis, E. & Bulder, L.N. & Cui, Y., 2024. "Flexible serial capacity allocation with intensive care application," International Journal of Production Economics, Elsevier, vol. 272(C).
    14. Bitran, Gabriel R. & Morabito, Reinaldo., 1994. "Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems," Working papers 3743-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    15. Sauer Cornelia & Daduna Hans, 2003. "Availability Formulas and Performance Measures for Separable Degradable Networks," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 165-194, January.
    16. Bing Lin & Rohit Bhatnagar & Yuchen Lin, 2024. "Admission Control of Parallel Queues with Fork Types of Jobs," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-30, December.
    17. John S. Hollywood, 2005. "An approximate planning model for distributed computing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 590-605, September.
    18. Kurt M. Bretthauer, 2000. "Optimal service and arrival rates in Jackson queueing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 1-17, February.
    19. Nico Dijk & Barteld Schilstra, 2022. "On two product form modifications for finite overflow systems," Annals of Operations Research, Springer, vol. 310(2), pages 519-549, March.
    20. D Worthington, 2009. "Reflections on queue modelling from the last 50 years," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 83-92, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06263-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.