IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04833-x.html
   My bibliography  Save this article

Enhancing deep learning algorithm accuracy and stability using multicriteria optimization: an application to distributed learning with MNIST digits

Author

Listed:
  • Davide La Torre

    (Université Côte d’Azur)

  • Danilo Liuzzi

    (University of Milan)

  • Marco Repetto

    (Université Côte d’Azur
    University of Milan-Bicocca
    Siemens Italy)

  • Matteo Rocca

    (Universitá degli Studi dell’Insubria)

Abstract

The training phase is the most crucial stage during the machine learning process. In the case of labeled data and supervised learning, machine learning entails minimizing the loss function under various constraints. We provide an innovative model for learning with numerous data sets, resulting from the application of multicriteria optimization techniques to existing deep learning algorithms. Data fitting is formulated as a multicriteria model in which each criterion measures the data fitting error on a specific data set. This is an optimization model involving a vector-valued function, and it has to be analyzed using the notion of Pareto efficiency. We present stability results for efficient solutions in the presence of input and output data perturbations. The multiple data set environment comes into play to eliminate the bias caused by the selection of a specific training set. To apply this concept, we present a scalarization strategy as well as numerical experiments in digit classification using MNIST data.

Suggested Citation

  • Davide La Torre & Danilo Liuzzi & Marco Repetto & Matteo Rocca, 2024. "Enhancing deep learning algorithm accuracy and stability using multicriteria optimization: an application to distributed learning with MNIST digits," Annals of Operations Research, Springer, vol. 339(1), pages 455-475, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04833-x
    DOI: 10.1007/s10479-022-04833-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04833-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04833-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herb Kunze & Davide Torre, 2022. "Solving inverse problems for steady-state equations using a multiple criteria model with collage distance, entropy, and sparsity," Annals of Operations Research, Springer, vol. 311(2), pages 1051-1065, April.
    2. Faizal Hafiz & Jan Broekaert & Davide La Torre & Akshya Swain, 2021. "A Multi-criteria Approach to Evolve Sparse Neural Architectures for Stock Market Forecasting," Papers 2111.08060, arXiv.org.
    3. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Papers 2104.14286, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ihab K. A. Hamdan & Wulamu Aziguli & Dezheng Zhang & Eli Sumarliah, 2023. "Machine learning in supply chain: prediction of real-time e-order arrivals using ANFIS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 549-568, March.
    2. Saeed Nosratabadi & Roya Khayer Zahed & Vadim Vitalievich Ponkratov & Evgeniy Vyacheslavovich Kostyrin, 2022. "Artificial Intelligence Models and Employee Lifecycle Management: A Systematic Literature Review," Papers 2209.07335, arXiv.org.
    3. Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
    4. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    5. Juan Xu & Cuicui Jiao & Dalun Zheng & Luoxin Li, 2023. "Agricultural Land Suitability Assessment at the County Scale in Taiyuan, China," Agriculture, MDPI, vol. 14(1), pages 1-20, December.
    6. Nosratabadi Saeed & Zahed Roya Khayer & Ponkratov Vadim Vitalievich & Kostyrin Evgeniy Vyacheslavovich, 2022. "Artificial Intelligence Models and Employee Lifecycle Management: A Systematic Literature Review," Organizacija, Sciendo, vol. 55(3), pages 181-198, August.
    7. Ewa Ropelewska & Kadir Sabanci & Muhammet Fatih Aslan, 2021. "Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning," Agriculture, MDPI, vol. 11(12), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04833-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.