IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05561-6.html
   My bibliography  Save this article

Bayer digestion maintenance optimisation with lazy constraints and Benders decomposition

Author

Listed:
  • Sandy Spiers

    (ARC Centre for Transforming Maintenance through Data Science
    Curtin University)

  • Hoa T. Bui

    (ARC Centre for Transforming Maintenance through Data Science
    Curtin University)

  • Ryan Loxton

    (ARC Centre for Transforming Maintenance through Data Science
    Curtin University)

  • Moussa Reda Mansour

    (Alcoa of Australia Limited)

  • Kylie Hollins

    (Alcoa of Australia Limited)

  • Richard Francis

    (Alcoa of Australia Limited)

  • Christopher Martindale

    (Alcoa of Australia Limited)

  • Yogesh Pimpale

    (Alcoa of Australia Limited)

Abstract

This paper describes a maintenance scheduling model for digester banks. Digester banks are network-connected assets that lie on the critical path of the Bayer process, a chemical refinement process that converts bauxite ore into alumina. The banks require different maintenance activities at different due times. Furthermore, the maintenance schedule is subject to production-related constraints and resource limitations. Given the complexity of scheduling maintenance for large fleets of digester banks, a continuous-time, mixed-integer linear program is formulated to find the cost-minimising maintenance schedule that satisfies all required constraints. A solution approach that employs lazy constraints and Benders decomposition is proposed to solve the model. Unlike generic implementations of Benders decomposition, we show that the subproblems can be solved explicitly using a specialist algorithm. We solve the scheduling model for realistic scenarios involving two Bayer refineries based in Western Australia.

Suggested Citation

  • Sandy Spiers & Hoa T. Bui & Ryan Loxton & Moussa Reda Mansour & Kylie Hollins & Richard Francis & Christopher Martindale & Yogesh Pimpale, 2024. "Bayer digestion maintenance optimisation with lazy constraints and Benders decomposition," Annals of Operations Research, Springer, vol. 338(1), pages 269-302, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05561-6
    DOI: 10.1007/s10479-023-05561-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05561-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05561-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    2. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    3. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    4. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    5. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "Benders Decomposition for Large-Scale Uncapacitated Hub Location," Operations Research, INFORMS, vol. 59(6), pages 1477-1490, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    2. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    3. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    4. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    5. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    6. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    7. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    8. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    10. Simon Emde & Shohre Zehtabian & Yann Disser, 2023. "Point-to-point and milk run delivery scheduling: models, complexity results, and algorithms based on Benders decomposition," Annals of Operations Research, Springer, vol. 322(1), pages 467-496, March.
    11. Hooshmand, F. & Mirarabrazi, F. & MirHassani, S.A., 2020. "Efficient Benders decomposition for distance-based critical node detection problem," Omega, Elsevier, vol. 93(C).
    12. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    13. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    14. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Ramamoorthy, Prasanna & Vidyarthi, Navneet & Verma, Manish, 2024. "Efficient solution approaches for the bi-criteria p-hub median and dispersion problem," European Journal of Operational Research, Elsevier, vol. 314(1), pages 79-93.
    16. Nieto-Isaza, Santiago & Fontaine, Pirmin & Minner, Stefan, 2022. "The value of stochastic crowd resources and strategic location of mini-depots for last-mile delivery: A Benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 62-79.
    17. Feng Yang & Zhong Wu & Xiaoyan Teng & Shaojian Qu, 2022. "Robust Counterpart Models for Fresh Agricultural Product Routing Planning Considering Carbon Emissions and Uncertainty," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    18. Aigerim Saken & Emil Karlsson & Stephen J. Maher & Elina Rönnberg, 2023. "Computational Evaluation of Cut-Strengthening Techniques in Logic-Based Benders’ Decomposition," SN Operations Research Forum, Springer, vol. 4(3), pages 1-53, September.
    19. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    20. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05561-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.