Author
Abstract
Multi-component maintenance optimization is a well-studied area for age-based failure models but in contrast, incorporation of condition-based maintenance (CBM) is still an open area of research. Taking advantage of condition monitoring information for updating components’ health conditions demands a dynamic short-term approach when grouping multiple activities subject to CBM policy. Degradation models are commonly utilized in CBM for predicting the future condition of a given component to decide appropriate maintenance actions where inherent uncertainties exist in the degradation processes. There are a limited number of works in literature that account for degradation uncertainties where maintenance cost is a function of such uncertainty. This paper aims to develop a maintenance decision support for a multi-component system by incorporating CBM while considering the degradation uncertainties. In this paper, a two-stage stochastic programming is proposed to address such an issue and the problem is formulated for situations where maintenance opportunities are limited due to practical constraints (e.g., remote offshore maintenance operations of wind farms, unmanned platforms in oil and gas industries, etc.). The concept of marginal cost is used in developing the equation of optimality. This is a combinatorial problem and becomes intractable when the number of components is large therefore a heuristic is proposed to reduce the problem size which reduces the required computational time substantially. It is shown that significant cost savings are possible, especially, when the downtime cost and common setup cost are significant. A numerical example is provided with a system of six components achieving above $$10\%$$ 10 % cost reduction when the degradation uncertainties are taken into account.
Suggested Citation
Abu MD Ariful Islam & Jørn Vatn, 2023.
"Condition-based multi-component maintenance decision support under degradation uncertainties,"
International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 961-979, December.
Handle:
RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01900-9
DOI: 10.1007/s13198-023-01900-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01900-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.