IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04714-3.html
   My bibliography  Save this article

Prioritization of healthcare systems during pandemics using Cronbach’s measure based fuzzy WASPAS approach

Author

Listed:
  • Muhammet Deveci

    (National Defence University
    Royal School of Mines, Imperial College London)

  • Raghunathan Krishankumar

    (Amrita School of Engineering)

  • Ilgin Gokasar

    (Bogazici University)

  • Rumeysa Tuna Deveci

    (Istanbul University)

Abstract

Pandemics are well-known as epidemics that spread globally and cause many illnesses and mortality. Because of globalization, the accelerated occurrence and circulation of new microbes, the infection has emerged and the incidence and movement of new microbes have sped up. Using technological devices to minimize the visit durations, specifying days for handling chronic diseases, subsidy for the staff are the alternatives that can help prevent healthcare systems from collapsing during pandemics. The study aims to define the efficient usage of optimization tools during pandemics to prevent healthcare systems from collapsing. In this study, a new integrated framework with fuzzy information is developed, which attempts to prioritize these alternatives for policymakers. First, rating data are assigned respective fuzzy values using the standard singleton grades. Later, criteria weights are determined by extending Cronbach´s measure to fuzzy context. The measure not only understands data consistency comprehensively, but also takes into consideration the attitudinal characteristics of experts. By this approach, a rational weight vector is obtained for decision-making. Further, an improved Weighted Aggregated Sum Product Assessment (WASPAS) algorithm is put forward for ranking alternatives, which is flexibly considering criteria along with personalized ordering and holistic ordering alternatives. The usefulness of the developed framework is tested with the help of a real case study. Rank values of alternatives when unbiased weights are used is given by 0.741, 0.582, 0.640 with ordering as $$R_{1} \succ R_{3} \succ R_{2}$$ R 1 ≻ R 3 ≻ R 2 . The sensitivity/comparative analysis reveals the impact of the proposed model as useful in selecting the best alternative for the healthcare systems during pandemics.

Suggested Citation

  • Muhammet Deveci & Raghunathan Krishankumar & Ilgin Gokasar & Rumeysa Tuna Deveci, 2023. "Prioritization of healthcare systems during pandemics using Cronbach’s measure based fuzzy WASPAS approach," Annals of Operations Research, Springer, vol. 328(1), pages 279-307, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04714-3
    DOI: 10.1007/s10479-022-04714-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04714-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04714-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosolino A. Candela & Vincent Geloso, 2021. "Economic freedom, pandemics, and robust political economy," Southern Economic Journal, John Wiley & Sons, vol. 87(4), pages 1250-1266, April.
    2. Imran Rasul, 2020. "The Economics of Viral Outbreaks," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 265-268, May.
    3. S.P. Anbuudayasankar & Ramesh Srikanthan & Margabandu Karthik & Prashant R. Nair & Nagarajan Sivakarthik & Packirisamy Indukumar, 2020. "Cloud-based technology for small and medium scale enterprises: a decision-making paradigm using IPA, AHP and fuzzy-AHP techniques," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 13(4), pages 335-352.
    4. Ayşegül Tuş & Esra Aytaç Adalı, 2019. "The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 528-538, June.
    5. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    6. Dhiman, Harsh S. & Deb, Dipankar, 2020. "Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms," Energy, Elsevier, vol. 202(C).
    7. Miomir Stanković & Željko Stević & Dillip Kumar Das & Marko Subotić & Dragan Pamučar, 2020. "A New Fuzzy MARCOS Method for Road Traffic Risk Analysis," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    8. Luis Felipe CeÌ spedes & Roberto Chang & AndreÌ s Velasco, 2020. "Macroeconomic policy responses to a pandemic," Vox eBook Chapters, in: Simeon Djankov & Ugo Panizza (ed.), COVID-19 in Developing Economies, edition 1, volume 1, chapter 1, pages 175-186, Centre for Economic Policy Research.
    9. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    10. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    2. R. Krishankumar & P. P. Amritha & K. S. Ravichandran, 2022. "RETRACTED ARTICLE: An integrated fuzzy decision model for prioritization of barriers affecting sustainability adoption within supply chains under unknown weight context," Operations Management Research, Springer, vol. 15(3), pages 1010-1027, December.
    3. Pradip Kundu & Ömer Faruk Görçün & Chandra Prakash Garg & Hande Küçükönder & Mustafa Çanakçıoğlu, 2024. "Evaluation of public transportation systems for sustainable cities using an integrated fuzzy multi-criteria group decision-making model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27655-27684, November.
    4. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    5. Haseli, Gholamreza & Yaran Ögel, İlkin & Ecer, Fatih & Hajiaghaei-Keshteli, Mostafa, 2023. "Luxury in female technology (FemTech): Selection of smart jewelry for women through BCM-MARCOS group decision-making framework with fuzzy ZE-numbers," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Jurgita Kuizinaitė & Mangirdas Morkūnas & Artiom Volkov, 2023. "Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    7. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    8. Du, Puliang & Zhou, Bo & Yang, Miaoheng, 2024. "Carbon emission reduction contribution analysis of electricity enterprises in urban green development: A quantum spherical fuzzy sets-based decision framework," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    9. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Adabavazeh, Nazila & Nikbakht, Mehrdad & Tirkolaee, Erfan Babaee, 2023. "Identifying and prioritizing resilient health system units to tackle the COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    11. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    12. Yazdani, Morteza & Torkayesh, Ali Ebadi & Chatterjee, Prasenjit & Fallahpour, Alireza & Montero-Simo, Maria Jose & Araque-Padilla, Rafael A. & Wong, Kuan Yew, 2022. "A fuzzy group decision-making model to measure resiliency in a food supply chain: A case study in Spain," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    13. Morteza Yazdani & Dragan Pamucar & Prasenjit Chatterjee & Ali Ebadi Torkayesh, 2022. "“A multi-tier sustainable food supplier selection model under uncertainty”," Operations Management Research, Springer, vol. 15(1), pages 116-145, June.
    14. Lulu Xin & Shuai Lang & Arunodaya Raj Mishra, 2022. "RETRACTED ARTICLE: Evaluate the challenges of sustainable supply chain 4.0 implementation under the circular economy concept using new decision making approach," Operations Management Research, Springer, vol. 15(3), pages 773-792, December.
    15. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    16. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    17. Muller, Seán M., 2021. "The dangers of performative scientism as the alternative to anti-scientific policymaking: A critical, preliminary assessment of South Africa’s Covid-19 response and its consequences," World Development, Elsevier, vol. 140(C).
    18. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    19. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    20. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04714-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.