A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-021-04382-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
- Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
- Virginia Ahalt & Nilay Tanık Argon & Serhan Ziya & Jeff Strickler & Abhi Mehrotra, 2018. "Comparison of emergency department crowding scores: a discrete-event simulation approach," Health Care Management Science, Springer, vol. 21(1), pages 144-155, March.
- B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
- Hainan Guo & David Goldsman & Kwok-Leung Tsui & Yu Zhou & Shui-Yee Wong, 2016. "Using simulation and optimisation to characterise durations of emergency department service times with incomplete data," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6494-6511, November.
- Yong-Hong Kuo & Omar Rado & Benedetta Lupia & Janny M. Y. Leung & Colin A. Graham, 2016. "Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 120-147, June.
- Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marco Boresta & Tommaso Giovannelli & Massimo Roma, 2024. "Managing low–acuity patients in an Emergency Department through simulation–based multiobjective optimization using a neural network metamodel," Health Care Management Science, Springer, vol. 27(3), pages 415-435, September.
- Shahab Sadri & Arsalan Paleshi & Lihui Bai & Monica Gentili, 2024. "A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic," Interfaces, INFORMS, vol. 54(2), pages 188-204, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alberto De Santis & Tommaso Giovannelli & Stefano Lucidi & Mauro Messedaglia & Massimo Roma, 2020. "An optimal non-uniform piecewise constant approximation for the patient arrival rate for a more efficient representation of the Emergency Departments arrival process," DIAG Technical Reports 2020-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Alberto De Santis & Tommaso Giovannelli & Stefano Lucidi & Mauro Messedaglia & Massimo Roma, 2022. "Determining the optimal piecewise constant approximation for the nonhomogeneous Poisson process rate of Emergency Department patient arrivals," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 979-1012, December.
- Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
- Marco Boresta & Tommaso Giovannelli & Massimo Roma, 2024. "Managing low–acuity patients in an Emergency Department through simulation–based multiobjective optimization using a neural network metamodel," Health Care Management Science, Springer, vol. 27(3), pages 415-435, September.
- Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.
- Mustafa Y. Sir & David Nestler & Thomas Hellmich & Devashish Das & Michael J. Laughlin & Michon C. Dohlman & Kalyan Pasupathy, 2017. "Optimization of Multidisciplinary Staffing Improves Patient Experiences at the Mayo Clinic," Interfaces, INFORMS, vol. 47(5), pages 425-441, October.
- Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
- Ellen Bockstal & Broos Maenhout, 2019. "A study on the impact of prioritising emergency department arrivals on the patient waiting time," Health Care Management Science, Springer, vol. 22(4), pages 589-614, December.
- Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
- Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
- James T. Lin & Chun-Chih Chiu, 2018. "A hybrid particle swarm optimization with local search for stochastic resource allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 481-495, March.
- Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
- Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
- G. Pantuso & L. M. Hvattum, 2021. "Maximizing performance with an eye on the finances: a chance-constrained model for football transfer market decisions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 583-611, July.
- Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
- Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
- Kaya, Onur & Teymourifar, Aydin & Ozturk, Gurkan, 2020. "Analysis of different public policies through simulation to increase total social utility in a healthcare system," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
- Bernard G. Zweers & Sandjai Bhulai & Rob D. Mei, 2021. "Planning hinterland container transportation in congested deep-sea terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 583-622, September.
- Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
- Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
More about this item
Keywords
Simulation-based optimization; Emergency department; Discrete event simulation; Model calibration; Derivative-free optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04382-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.