IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v313y2022i2d10.1007_s10479-019-03459-w.html
   My bibliography  Save this article

Pricing insurance premia: a top down approach

Author

Listed:
  • Eymen Errais

    (University of Tunis, Tunis Business School)

Abstract

Insurance plays an important economic and social role through its ability to transfer risk. In this paper, we focus on the largest insurance sector, the automobile sector. We model automobile insurance premia through a top down approach. Our approach is appealing since it defines the dynamics of the aggregate loss in a consistent way, and also provides a coherent definition of the joint distribution of the total losses and the car insurance premium. We show how to make this top down approach computationally tractable by using the class of affine point processes, which are intensity-based jump processes driven by affine jump diffusions. An affine point process is sufficiently flexible to account for both country global infrastructure and driving behaviour. Further it allows for efficient computation and calibration of a large class of insurance products.

Suggested Citation

  • Eymen Errais, 2022. "Pricing insurance premia: a top down approach," Annals of Operations Research, Springer, vol. 313(2), pages 899-914, June.
  • Handle: RePEc:spr:annopr:v:313:y:2022:i:2:d:10.1007_s10479-019-03459-w
    DOI: 10.1007/s10479-019-03459-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03459-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03459-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giesecke, Kay & Schwenkler, Gustavo, 2018. "Filtered likelihood for point processes," Journal of Econometrics, Elsevier, vol. 204(1), pages 33-53.
    2. Noureddine Benlagha & Imen Karaa, 2017. "Evidence of adverse selection in automobile insurance market: A seemingly unrelated probit modelling," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1330303-133, January.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian Yao & Zhiqiu Li & Zhichao Ling & Junfeng Lin, 2020. "Asymptotic Smiles for an Affine Jump-Diffusion Model," Papers 2003.00334, arXiv.org, revised May 2020.
    2. I. Gaia Becheri & Feike C. Drost & Bas J.M. Werker, 2016. "Asymptotic Inference for Jump Diffusions with State-Dependent Intensity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 520-542, June.
    3. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    4. Xiangdong Liu & Jiahui Wu & Xianglong Li, 2023. "Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    5. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    6. Xuefeng Gao & Xiang Zhou & Lingjiong Zhu, 2017. "Transform Analysis for Hawkes Processes with Applications in Dark Pool Trading," Papers 1710.01452, arXiv.org.
    7. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    8. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    11. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    12. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    13. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    14. Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
    15. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    16. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    17. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    18. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    19. Takamizawa, Hideyuki & Shoji, Isao, 2009. "Modeling the term structure of interest rates with general diffusion processes: A moment approximation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 65-77, January.
    20. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Insurance; Car accidents; Stochastic modeling; Self exciting processes;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:313:y:2022:i:2:d:10.1007_s10479-019-03459-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.