IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v307y2021i1d10.1007_s10479-021-04137-6.html
   My bibliography  Save this article

The multi-depot heterogeneous VRP with backhauls: formulation and a hybrid VNS with GRAMPS meta-heuristic approach

Author

Listed:
  • Fatih Kocatürk

    (İzmir University of Economics)

  • G. Yazgı Tütüncü

    (İzmir University of Economics
    IESEG School of Management)

  • Said Salhi

    (University of Kent)

Abstract

In this paper, we investigate the Multi-Depot Heterogeneous VRP with Backhauls. Though the problem is a generalisation of three existing routing problems, this is the first time this combined routing problem is investigated. A mathematical formulation is first presented followed by some tightening. A powerful and novel hybridisation of Variable Neighbourhood Search (VNS) with the Greedy Randomized Adaptive Memory Programming Search is proposed. As there are no problem instances available for bench-marking and evaluation purposes, we generated data sets by combining those from existing vehicle routing problems. The proposed meta-heuristic obtains a number of optimal solutions for small instances and yields about $$13\%$$ 13 % gap from the lower bounds compared to nearly $$40\%$$ 40 % and $$20\%$$ 20 % average gap values for our CPLEX implementation and the VNS without hybridisation, respectively.

Suggested Citation

  • Fatih Kocatürk & G. Yazgı Tütüncü & Said Salhi, 2021. "The multi-depot heterogeneous VRP with backhauls: formulation and a hybrid VNS with GRAMPS meta-heuristic approach," Annals of Operations Research, Springer, vol. 307(1), pages 277-302, December.
  • Handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04137-6
    DOI: 10.1007/s10479-021-04137-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04137-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04137-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    3. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    4. Irnich, Stefan, 2000. "A multi-depot pickup and delivery problem with a single hub and heterogeneous vehicles," European Journal of Operational Research, Elsevier, vol. 122(2), pages 310-328, April.
    5. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    6. G.Y. Tütüncü & B.M. Carreto Baker, 2009. "A visual interactive approach to the classical and mixed vehicle routing problems with backhauls," Post-Print hal-00581628, HAL.
    7. Salhi, S. & Sari, M., 1997. "A multi-level composite heuristic for the multi-depot vehicle fleet mix problem," European Journal of Operational Research, Elsevier, vol. 103(1), pages 95-112, November.
    8. Paolo Toth & Daniele Vigo, 1997. "An Exact Algorithm for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 31(4), pages 372-385, November.
    9. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    10. S Salhi & G Nagy, 1999. "A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1034-1042, October.
    11. YazgI Tütüncü, G. & Carreto, Carlos A.C. & Baker, Barrie M., 2009. "A visual interactive approach to classical and mixed vehicle routing problems with backhauls," Omega, Elsevier, vol. 37(1), pages 138-154, February.
    12. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    13. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    2. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    3. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    4. Margaretha Gansterer & Richard F. Hartl & Philipp E. H. Salzmann, 2018. "Exact solutions for the collaborative pickup and delivery problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 357-371, June.
    5. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    6. C. Y. Lam, 2021. "Optimizing logistics routings in a network perspective of supply and demand nodes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 357-377, March.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    9. José Brandão, 2016. "A deterministic iterated local search algorithm for the vehicle routing problem with backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 445-465, July.
    10. Kalayci, Can B. & Kulak, Osman & Günther, Hans-Otto, 2015. "A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time LimitAuthor-Name: Polat, Olcay," European Journal of Operational Research, Elsevier, vol. 242(2), pages 369-382.
    11. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    12. Paul Buijs & Jose Alejandro Lopez Alvarez & Marjolein Veenstra & Kees Jan Roodbergen, 2016. "Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom," Interfaces, INFORMS, vol. 46(2), pages 119-132, April.
    13. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    14. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    15. Ganesh, K. & Narendran, T.T., 2007. "CLOVES: A cluster-and-search heuristic to solve the vehicle routing problem with delivery and pick-up," European Journal of Operational Research, Elsevier, vol. 178(3), pages 699-717, May.
    16. Julio C. Londoño & Rafael D. Tordecilla & Leandro do C. Martins & Angel A. Juan, 2021. "A biased-randomized iterated local search for the vehicle routing problem with optional backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 387-416, July.
    17. T-S Chang & Y-F Liao, 2011. "Routing strategies for integrating forward distribution and reverse collection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 971-981, June.
    18. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    19. Yanik, Seda & Bozkaya, Burcin & deKervenoael, Ronan, 2014. "A new VRPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, Elsevier, vol. 236(3), pages 879-890.
    20. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04137-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.