IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v296y2021i1d10.1007_s10479-020-03581-0.html
   My bibliography  Save this article

Generating the efficient set of MultiObjective Integer Linear plus Linear Fractional Programming Problems

Author

Listed:
  • Yasmine Cherfaoui

    (USTHB)

  • Mustapha Moulaï

    (USTHB)

Abstract

The problem of optimizing a linear plus linear fractional function is an important field of search, it is a difficult problem since the linear plus linear fractional function doesn’t possess any convexity propriety. In this paper, we propose a method that generates the set of the efficient solutions of multiobjective integer linear plus linear fractional programming problem. Our method consists in Branch-and-Bound exploration combined with cutting plane technique that allows to remove from search inefficient solutions. The cutting plane technique takes into account the inefficiency of a solution in another problem that implies the inefficiency of that solution in our problem and uses this link to reduce the exploration’s domain.

Suggested Citation

  • Yasmine Cherfaoui & Mustapha Moulaï, 2021. "Generating the efficient set of MultiObjective Integer Linear plus Linear Fractional Programming Problems," Annals of Operations Research, Springer, vol. 296(1), pages 735-753, January.
  • Handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-020-03581-0
    DOI: 10.1007/s10479-020-03581-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03581-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03581-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chadha, S. S., 1993. "Dual of the sum of a linear and linear fractional program," European Journal of Operational Research, Elsevier, vol. 67(1), pages 136-139, May.
    2. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    3. Bela Martos & Andrew & Veronika Whinston, 1964. "Hyperbolic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 11(2), pages 135-155, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nacéra Maachou & Mustapha Moulaï, 2022. "Branch and cut method for solving integer indefinite quadratic bilevel programs," Annals of Operations Research, Springer, vol. 316(1), pages 197-227, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    2. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    3. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    4. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    5. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    6. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    7. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    8. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    9. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    10. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    11. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    12. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Richard S. Barr & Kory A. Killgo & Thomas F. Siems & Sheri Zimmel, 1999. "Evaluating the productive efficiency and performance of U.S. commercial banks," Financial Industry Studies Working Paper 99-3, Federal Reserve Bank of Dallas.
    15. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    16. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    17. Kao, Chiang & Liu, Shiang-Tai, 2020. "A slacks-based measure model for calculating cross efficiency in data envelopment analysis," Omega, Elsevier, vol. 95(C).
    18. Weiwei Zhu & Qian Zhang & Haiqing Wang, 2019. "Fixed costs and shared resources allocation in two-stage network DEA," Annals of Operations Research, Springer, vol. 278(1), pages 177-194, July.
    19. Laura Carosi & Laura Martein, 2008. "A sequential method for a class of pseudoconcave fractional problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 153-164, June.
    20. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-020-03581-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.