IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v296y2021i1d10.1007_s10479-019-03216-z.html
   My bibliography  Save this article

Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data

Author

Listed:
  • Liguo Jiao

    (Pusan National University)

  • Jae Hyoung Lee

    (Pukyong National University)

Abstract

In this article, a mathematical programming problem under affinely parameterized uncertain data with multiple objective functions given by SOS-convex polynomials, denoting by (UMP), is considered; moreover, its robust counterpart, denoting by (RMP), is proposed by following the robust optimization approach (worst-case approach). Then, by employing the well-known $$\epsilon $$ ϵ -constraint method (a scalarization technique), we substitute (RMP) by a class of scalar problems. Under some suitable conditions, a zero duality gap result, between each scalar problem and its relaxation problems, is established; moreover, the relationship of their solutions is also discussed. As a consequence, we observe that finding robust efficient solutions to (UMP) is tractable by such a scalarization method. Finally, a nontrivial numerical example is designed to show how to find robust efficient solutions to (UMP) by applying our results.

Suggested Citation

  • Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.
  • Handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-019-03216-z
    DOI: 10.1007/s10479-019-03216-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03216-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03216-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    2. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    3. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    4. Erin K. Doolittle & Hervé L. M. Kerivin & Margaret M. Wiecek, 2018. "Robust multiobjective optimization with application to Internet routing," Annals of Operations Research, Springer, vol. 271(2), pages 487-525, December.
    5. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Hong & Kwan Deok Bae & Do Sang Kim, 2022. "Minimax programming as a tool for studying robust multi-objective optimization problems," Annals of Operations Research, Springer, vol. 319(2), pages 1589-1606, December.
    2. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    3. Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.
    2. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    3. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    4. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    5. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    6. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    7. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.
    8. Kuntal Som & V. Vetrivel, 2021. "On robustness for set-valued optimization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 905-925, April.
    9. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.
    11. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    12. La Huang & Danyang Liu & Yaping Fang, 2023. "Convergence of an SDP hierarchy and optimality of robust convex polynomial optimization problems," Annals of Operations Research, Springer, vol. 320(1), pages 33-59, January.
    13. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    14. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    15. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    16. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    17. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    18. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    19. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    20. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-019-03216-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.