IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v294y2020i1d10.1007_s10479-019-03188-0.html
   My bibliography  Save this article

Default avoidance on credit card portfolios using accounting, demographical and exploratory factors: decision making based on machine learning (ML) techniques

Author

Listed:
  • Nikolaos Sariannidis

    (Western Macedonia University οf Applied Sciences)

  • Stelios Papadakis

    (Technological Educational Institute of Crete)

  • Alexandros Garefalakis

    (Technological Educational Institute of Crete)

  • Christos Lemonakis

    (Technological Educational Institute of Crete)

  • Tsioptsia Kyriaki-Argyro

    (Western Macedonia University οf Applied Sciences)

Abstract

Effective and thorough credit-risk management is a key factor for lending institutions, as significant financial losses can arise from the borrowers’ default. Consequently, machine learning methods can measure and analyze credit risk objectively when at the same time they face increasingly attention. This study analyzes default payment data from a credit cards’ portfolio containing some 30,000 clients from Taiwan with twenty-three attributes and with no missing information. We compare prediction accuracy of seven classification methods used, i.e. KNN, Logistic Regression, Naïve Bayes, Decision Trees, Random Forest, SVC, and Linear SVC. The results indicate that only few out of most of the typical variables used can adequately analyze default characteristics in terms of lending decisions. The results provide effective feedback to credit evaluators, lending institutions and business analysts for in-depth analysis. Also, they mention to the importance of the precautionary borrowing techniques to be used to better understand credit-card borrowers’ behavior, along with specific accounting, historical and demographical characteristics.

Suggested Citation

  • Nikolaos Sariannidis & Stelios Papadakis & Alexandros Garefalakis & Christos Lemonakis & Tsioptsia Kyriaki-Argyro, 2020. "Default avoidance on credit card portfolios using accounting, demographical and exploratory factors: decision making based on machine learning (ML) techniques," Annals of Operations Research, Springer, vol. 294(1), pages 715-739, November.
  • Handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03188-0
    DOI: 10.1007/s10479-019-03188-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03188-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03188-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    2. Yong Shi & Yi Peng & Gang Kou & Zhengxin Chen, 2005. "Classifying Credit Card Accounts For Business Intelligence And Decision Making: A Multiple-Criteria Quadratic Programming Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 581-599.
    3. Jing He & Xiantao Liu & Yong Shi & Weixuan Xu & Nian Yan, 2004. "Classifications Of Credit Cardholder Behavior By Using Fuzzy Linear Programming," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 633-650.
    4. Shigeyuki Hamori & Minami Kawai & Takahiro Kume & Yuji Murakami & Chikara Watanabe, 2018. "Ensemble Learning or Deep Learning? Application to Default Risk Analysis," JRFM, MDPI, vol. 11(1), pages 1-14, March.
    5. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    6. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    2. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    2. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    4. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    5. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    6. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    8. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    9. Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
    10. Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
    11. Flood, Mark D. & Lemieux, Victoria L. & Varga, Margaret & William Wong, B.L., 2016. "The application of visual analytics to financial stability monitoring," Journal of Financial Stability, Elsevier, vol. 27(C), pages 180-197.
    12. Cristian KEVORCHIAN & Camelia GAVRILESCU & Gheorghe HURDUZEU, 2015. "An Approach Based On Big Data And Machine Learning For Optimizing The Management Of Agricultural Production Risks," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 12(2), pages 117-128.
    13. Hinterlang, Natascha & Hollmayr, Josef, 2022. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Journal of Macroeconomics, Elsevier, vol. 74(C).
    14. Aussenegg, Wolfgang & Resch, Florian & Winkler, Gerhard, 2011. "Pitfalls and remedies in testing the calibration quality of rating systems," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 698-708, March.
    15. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    16. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    17. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    18. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    19. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03188-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.