IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v290y2020i1d10.1007_s10479-018-3069-7.html
   My bibliography  Save this article

A sustainable economic production model: effects of quality and emissions tax from transportation

Author

Listed:
  • Noura Yassine

    (Beirut Arab University)

Abstract

Faced with pressure from the public, governments, and environmental agencies, it is becoming essential for manufacturing firms to identify and implement sustainable operations aiming at reducing the negative social and environmental impacts while enhancing the firm’s public image and increasing its economic performance. This paper investigates a production model that incorporates the quality of different types of components/raw material parts used in the production process along with their transportation emissions tax. It is assumed that the various types of components contain both perfect and imperfect quality items. The percentage of perfect quality components of a particular type is a random variable having a known probability distribution. Based on results regarding the probability distribution and the expected value of the minimum of a set of random variables, a mathematical model is developed and the total production/inventory cost is obtained. A closed form formula approximating the optimal solution is derived in terms of the expected value of the minimum of a set of random variables related to the percentages of perfect quality components. The case in which the percentages of perfect quality components are uniformly distributed is investigated and a numerical example is given to illustrate this case. The accuracy of the approximated solution is assessed via a simulation algorithm that can also be used to approximate the optimal lot size in the case when the percentages of perfect quality components are not all uniformly distributed.

Suggested Citation

  • Noura Yassine, 2020. "A sustainable economic production model: effects of quality and emissions tax from transportation," Annals of Operations Research, Springer, vol. 290(1), pages 73-94, July.
  • Handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-3069-7
    DOI: 10.1007/s10479-018-3069-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3069-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3069-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Battini, Daria & Persona, Alessandro & Sgarbossa, Fabio, 2014. "A sustainable EOQ model: Theoretical formulation and applications," International Journal of Production Economics, Elsevier, vol. 149(C), pages 145-153.
    2. Behnam Fahimnia & Joseph Sarkis & Angappa Gunasekaran & Reza Farahani, 2017. "Decision models for sustainable supply chain design and management," Annals of Operations Research, Springer, vol. 250(2), pages 277-278, March.
    3. Xiang Li, 2017. "Optimal procurement strategies from suppliers with random yield and all-or-nothing risks," Annals of Operations Research, Springer, vol. 257(1), pages 167-181, October.
    4. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    5. Bonney, Maurice & Jaber, Mohamad Y., 2011. "Environmentally responsible inventory models: Non-classical models for a non-classical era," International Journal of Production Economics, Elsevier, vol. 133(1), pages 43-53, September.
    6. Khan, M. & Jaber, M.Y. & Guiffrida, A.L. & Zolfaghari, S., 2011. "A review of the extensions of a modified EOQ model for imperfect quality items," International Journal of Production Economics, Elsevier, vol. 132(1), pages 1-12, July.
    7. Salameh, M. K. & Jaber, M. Y., 2000. "Economic production quantity model for items with imperfect quality," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 59-64, March.
    8. Ata Allah Taleizadeh, 2018. "A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering," Annals of Operations Research, Springer, vol. 261(1), pages 303-337, February.
    9. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    10. N. Jawahar & G. Satish Pandian & Angappa Gunasekaran & Nachiappan Subramanian, 2017. "An Optimization Model for Sustainability Program," Annals of Operations Research, Springer, vol. 250(2), pages 389-425, March.
    11. E. Allevi & A. Gnudi & I. V. Konnov & G. Oggioni, 2018. "Evaluating the effects of environmental regulations on a closed-loop supply chain network: a variational inequality approach," Annals of Operations Research, Springer, vol. 261(1), pages 1-43, February.
    12. Gang Wang & Angappa Gunasekaran, 2017. "Modeling and analysis of sustainable supply chain dynamics," Annals of Operations Research, Springer, vol. 250(2), pages 521-536, March.
    13. Mehmood Khan & Mohamad Y. Jaber, 2011. "Optimal inventory cycle in a two-stage supply chain incorporating imperfect items from suppliers," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 10(4), pages 442-457.
    14. Yang, P. C. & Wee, H. M., 2002. "A single-vendor and multiple-buyers production-inventory policy for a deteriorating item," European Journal of Operational Research, Elsevier, vol. 143(3), pages 570-581, December.
    15. Wahab, M.I.M. & Mamun, S.M.H. & Ongkunaruk, P., 2011. "EOQ models for a coordinated two-level international supply chain considering imperfect items and environmental impact," International Journal of Production Economics, Elsevier, vol. 134(1), pages 151-158, November.
    16. Ata Allah Taleizadeh & Shayan Tavakoli & Luis Augusto San-José, 2018. "A lot sizing model with advance payment and planned backordering," Annals of Operations Research, Springer, vol. 271(2), pages 1001-1022, December.
    17. Hong Fu & Yongkai Ma & Debing Ni & Xiaoqiang Cai, 2017. "Coordinating a decentralized hybrid push–pull assembly system with unreliable supply and uncertain demand," Annals of Operations Research, Springer, vol. 257(1), pages 537-557, October.
    18. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yosef Daryanto & Djoko Setyanto, 2023. "Production Inventory Optimization Considering Direct and Indirect Carbon Emissions under a Cap-and-Trade Regulation," Logistics, MDPI, vol. 7(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hovelaque, Vincent & Bironneau, Laurent, 2015. "The carbon-constrained EOQ model with carbon emission dependent demand," International Journal of Production Economics, Elsevier, vol. 164(C), pages 285-291.
    2. Harun Öztürk, 2019. "Modeling an inventory problem with random supply, inspection and machine breakdown," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 497-527, June.
    3. Andriolo, Alessandro & Battini, Daria & Persona, Alessandro & Sgarbossa, Fabio, 2015. "Haulage sharing approach to achieve sustainability in material purchasing: New method and numerical applications," International Journal of Production Economics, Elsevier, vol. 164(C), pages 308-318.
    4. Wakhid Ahmad Jauhari & I Nyoman Pujawan & Mokh Suef, 2023. "Sustainable inventory management with hybrid production system and investment to reduce defects," Annals of Operations Research, Springer, vol. 324(1), pages 543-572, May.
    5. Naoufel Cheikhrouhou & Biswajit Sarkar & Baishakhi Ganguly & Asif Iqbal Malik & Rafael Batista & Young Hae Lee, 2018. "Optimization of sample size and order size in an inventory model with quality inspection and return of defective items," Annals of Operations Research, Springer, vol. 271(2), pages 445-467, December.
    6. Ongkunaruk, P. & Wahab, M.I.M. & Chen, Y., 2016. "A genetic algorithm for a joint replenishment problem with resource and shipment constraints and defective items," International Journal of Production Economics, Elsevier, vol. 175(C), pages 142-152.
    7. Nasr, Walid W. & Jaber, Mohamad Y., 2019. "Supplier development in a two-level lot sizing problem with non-conforming items and learning," International Journal of Production Economics, Elsevier, vol. 216(C), pages 349-363.
    8. Harun Öztürk, 2021. "Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs," Operational Research, Springer, vol. 21(1), pages 167-204, March.
    9. Andriolo, Alessandro & Battini, Daria & Grubbström, Robert W. & Persona, Alessandro & Sgarbossa, Fabio, 2014. "A century of evolution from Harris׳s basic lot size model: Survey and research agenda," International Journal of Production Economics, Elsevier, vol. 155(C), pages 16-38.
    10. Rezaei, Jafar & Salimi, Negin, 2012. "Economic order quantity and purchasing price for items with imperfect quality when inspection shifts from buyer to supplier," International Journal of Production Economics, Elsevier, vol. 137(1), pages 11-18.
    11. Jaber, Mohamad Y. & Zanoni, Simone & Zavanella, Lucio E., 2014. "Economic order quantity models for imperfect items with buy and repair options," International Journal of Production Economics, Elsevier, vol. 155(C), pages 126-131.
    12. K. M. Kamna & Priyamvada & Jitendra Singh & Chandra K. Jaggi, 2024. "A green strategic approach towards a smart production system with promotional and environment sensitive demand," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3672-3687, August.
    13. Yosef Daryanto & Hui Ming Wee & Gede Agus Widyadana, 2019. "Low Carbon Supply Chain Coordination for Imperfect Quality Deteriorating Items," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    14. Irfanullah Khan & Jihed Jemai & Han Lim & Biswajit Sarkar, 2019. "Effect of Electrical Energy on the Manufacturing Setup Cost Reduction, Transportation Discounts, and Process Quality Improvement in a Two-Echelon Supply Chain Management under a Service-Level Constrai," Energies, MDPI, vol. 12(19), pages 1-32, September.
    15. Hsu, Jia-Tzer & Hsu, Lie-Fern, 2013. "An EOQ model with imperfect quality items, inspection errors, shortage backordering, and sales returns," International Journal of Production Economics, Elsevier, vol. 143(1), pages 162-170.
    16. Hauck, Zsuzsanna & Rabta, Boualem & Reiner, Gerald, 2023. "Coordinating quality decisions in a two-stage supply chain under buyer dominance," International Journal of Production Economics, Elsevier, vol. 264(C).
    17. Nasr, Walid W. & Maddah, Bacel & Salameh, Moueen K., 2013. "EOQ with a correlated binomial supply," International Journal of Production Economics, Elsevier, vol. 144(1), pages 248-255.
    18. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2013. "Joint optimal lot sizing and production control policy in an unreliable and imperfect manufacturing system," International Journal of Production Economics, Elsevier, vol. 144(1), pages 143-156.
    19. Leopoldo Eduardo Cárdenas-Barrón & María José Lea Plaza-Makowsky & María Alejandra Sevilla-Roca & José María Núñez-Baumert & Buddhadev Mandal, 2021. "An Inventory Model for Imperfect Quality Products with Rework, Distinct Holding Costs, and Nonlinear Demand Dependent on Price," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    20. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-3069-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.