IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v274y2019i1d10.1007_s10479-018-2915-y.html
   My bibliography  Save this article

On a 2-class polling model with reneging and $$k_i$$ k i -limited service

Author

Listed:
  • Kevin Granville

    (University of Waterloo)

  • Steve Drekic

    (University of Waterloo)

Abstract

This paper analyzes a 2-class, single-server polling model operating under a $$k_i$$ k i -limited service discipline with class-dependent switchover times. Arrivals to each class are assumed to follow a Poisson process with phase-type distributed service times. Within each queue, customers are impatient and renege (i.e., abandon the queue) if the time before entry into service exceeds an exponentially distributed patience time. We model the queueing system as a level-dependent quasi-birth-and-death process, and the steady-state joint queue length distribution as well as the per-class waiting time distributions are computed via the use of matrix analytic techniques. The impacts of reneging and choice of service time distribution are investigated through a series of numerical experiments, with a particular focus on the determination of $$(k_1,k_2)$$ ( k 1 , k 2 ) which minimizes a cost function involving the expected time a customer spends waiting in the queue and an additional penalty cost should reneging take place.

Suggested Citation

  • Kevin Granville & Steve Drekic, 2019. "On a 2-class polling model with reneging and $$k_i$$ k i -limited service," Annals of Operations Research, Springer, vol. 274(1), pages 267-290, March.
  • Handle: RePEc:spr:annopr:v:274:y:2019:i:1:d:10.1007_s10479-018-2915-y
    DOI: 10.1007/s10479-018-2915-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2915-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2915-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Boon, 2012. "A polling model with reneging at polling instants," Annals of Operations Research, Springer, vol. 198(1), pages 5-23, September.
    2. Stephen C. Graves, 1982. "The Application of Queueing Theory to Continuous Perishable Inventory Systems," Management Science, INFORMS, vol. 28(4), pages 400-406, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael N. Katehakis & Benjamin Melamed & Jim Junmin Shi, 2022. "Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: a direct treatment of time-average cost," Annals of Operations Research, Springer, vol. 317(2), pages 665-691, October.
    2. Opher Baron & Oded Berman & David Perry, 2010. "Continuous review inventory models for perishable items ordered in batches," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 217-247, October.
    3. David Perry & M. J. M. Posner, 1998. "AN (S − 1, S) Inventory System with Fixed Shelf Life and Constant Lead Times," Operations Research, INFORMS, vol. 46(3-supplem), pages 65-71, June.
    4. Kopach, Renata & Balcioglu, Baris & Carter, Michael, 2008. "Tutorial on constructing a red blood cell inventory management system with two demand rates," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1051-1059, March.
    5. Krishnamoorthy, A. & Babu, S. & Narayanan, Viswanath C., 2009. "The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service," European Journal of Operational Research, Elsevier, vol. 195(1), pages 174-185, May.
    6. Philipp Afèche & Adam Diamant & Joseph Milner, 2014. "Double-Sided Batch Queues with Abandonment: Modeling Crossing Networks," Operations Research, INFORMS, vol. 62(5), pages 1179-1201, October.
    7. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    8. Toraubally, Waseem A., 2023. "Comparative advantage with many goods: New treatment and results," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1188-1201.
    9. David Perry, 1999. "Analysis of a Sampling Control Scheme for a Perishable Inventory System," Operations Research, INFORMS, vol. 47(6), pages 966-973, December.
    10. Ravi Suman & Ananth Krishnamurthy, 2020. "Analysis of tandem polling queues with finite buffers," Annals of Operations Research, Springer, vol. 293(1), pages 343-369, October.
    11. Ravichandran, N., 1995. "Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand," European Journal of Operational Research, Elsevier, vol. 84(2), pages 444-457, July.
    12. Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    13. Klosterhalfen, Steffen T. & Holzhauer, Falk & Fleischmann, Moritz, 2018. "Control of a continuous production inventory system with production quantity restrictions," European Journal of Operational Research, Elsevier, vol. 268(2), pages 569-581.
    14. Onno Boxma & David Perry & Wolfgang Stadje & Shelley Zacks, 2022. "A compound Poisson EOQ model for perishable items with intermittent high and low demand periods," Annals of Operations Research, Springer, vol. 317(2), pages 439-459, October.
    15. Kim, Bara & Kim, Jeongsim, 2018. "Extension of the loss probability formula to an overloaded queue with impatient customers," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 54-62.
    16. Jim (Junmin) Shi & Michael N. Katehakis & Benjamin Melamed & Yusen Xia, 2014. "Production-Inventory Systems with Lost Sales and Compound Poisson Demands," Operations Research, INFORMS, vol. 62(5), pages 1048-1063, October.
    17. M. Amirthakodi & V. Radhamani & B. Sivakumar, 2015. "A perishable inventory system with service facility and feedback customers," Annals of Operations Research, Springer, vol. 233(1), pages 25-55, October.
    18. S. R. Chakravarthy & Arunava Maity & U. C. Gupta, 2017. "An ‘(s, S)’ inventory in a queueing system with batch service facility," Annals of Operations Research, Springer, vol. 258(2), pages 263-283, November.
    19. Onno Boxma & David Perry & Shelley Zacks, 2015. "A Fluid EOQ Model of Perishable Items with Intermittent High and Low Demand Rates," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 390-402, February.
    20. Z Shen & M Dessouky & F Ordonez, 2011. "Perishable inventory management system with a minimum volume constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2063-2082, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:274:y:2019:i:1:d:10.1007_s10479-018-2915-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.