IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v267y2018i1d10.1007_s10479-016-2298-x.html
   My bibliography  Save this article

Portfolio optimization under partial uncertainty and incomplete information: a probability multimeasure-based approach

Author

Listed:
  • D. La Torre

    (University of Milan
    Khalifa University)

  • F. Mendivil

    (Acadia University)

Abstract

Markowitz’s work has had a major impact on academic research and the financial industry as a whole. The main idea of his model is risk aversion of average investors and their desire to maximise the expected return with the least risk. In this paper we extend the classical Markowitz’s model by introducing a portfolio optmization model in which the underlying space of events is described in terms of a probability multimeasure. The notion of probability multimeasure allows to formalize the concept of imprecise probability measure and incomplete information.

Suggested Citation

  • D. La Torre & F. Mendivil, 2018. "Portfolio optimization under partial uncertainty and incomplete information: a probability multimeasure-based approach," Annals of Operations Research, Springer, vol. 267(1), pages 267-279, August.
  • Handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-016-2298-x
    DOI: 10.1007/s10479-016-2298-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2298-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2298-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben Abdelaziz, Fouad & Masri, Hatem, 2010. "A compromise solution for the multiobjective stochastic linear programming under partial uncertainty," European Journal of Operational Research, Elsevier, vol. 202(1), pages 55-59, April.
    2. Ben Abdelaziz, F. & Masri, H., 2005. "Stochastic programming with fuzzy linear partial information on probability distribution," European Journal of Operational Research, Elsevier, vol. 162(3), pages 619-629, May.
    3. Utz, Sebastian & Wimmer, Maximilian & Steuer, Ralph E., 2015. "Tri-criterion modeling for constructing more-sustainable mutual funds," European Journal of Operational Research, Elsevier, vol. 246(1), pages 331-338.
    4. Hiai, Fumio, 1978. "Radon-Nikodym theorems for set-valued measures," Journal of Multivariate Analysis, Elsevier, vol. 8(1), pages 96-118, March.
    5. Davide LA TORRE & Franklin MENDIVIL, 2007. "Iterated function systems on multifunctions and inverse problems," Departmental Working Papers 2007-32, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    6. Abdelaziz, Fouad Ben & Aouni, Belaid & Fayedh, Rimeh El, 2007. "Multi-objective stochastic programming for portfolio selection," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1811-1823, March.
    7. Lee, Sang M & Lerro, A J, 1973. "Optimizing the Portfolio Selection for Mutual Funds," Journal of Finance, American Finance Association, vol. 28(5), pages 1087-1102, December.
    8. Ralph E. Steuer & Yue Qi & Markus Hirschberger, 2008. "Portfolio Selection in the Presence of Multiple Criteria," Springer Optimization and Its Applications, in: Constantin Zopounidis & Michael Doumpos & Panos M. Pardalos (ed.), Handbook of Financial Engineering, pages 3-24, Springer.
    9. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    10. Urli, Bruno & Nadeau, Raymond, 2004. "PROMISE/scenarios: An interactive method for multiobjective stochastic linear programming under partial uncertainty," European Journal of Operational Research, Elsevier, vol. 155(2), pages 361-372, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    2. Alejandro Balbás & Beatriz Balbás & Raquel Balbás, 2022. "Pareto efficient buy and hold investment strategies under order book linked constraints," Annals of Operations Research, Springer, vol. 311(2), pages 945-965, April.
    3. D. La Torre & F. Mendivil, 2022. "Stochastic efficiency and inefficiency in portfolio optimization with incomplete information: a set-valued probability approach," Annals of Operations Research, Springer, vol. 311(2), pages 1085-1098, April.
    4. Murcia, Nathanaëlle N.S. & Ferreira, Fernando A.F. & Ferreira, João J.M., 2022. "Enhancing strategic management using a “quantified VRIO”: Adding value with the MCDA approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Xu, Peng, 2024. "Testing out-of-sample portfolio performance using second-order stochastic dominance constrained optimization approach," International Review of Financial Analysis, Elsevier, vol. 95(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. La Torre & F. Mendivil, 2022. "Stochastic efficiency and inefficiency in portfolio optimization with incomplete information: a set-valued probability approach," Annals of Operations Research, Springer, vol. 311(2), pages 1085-1098, April.
    2. Florian Methling & Rüdiger Nitzsch, 2019. "Thematic portfolio optimization: challenging the core satellite approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 133-154, June.
    3. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    4. Ben Abdelaziz, Fouad & Masri, Hatem, 2010. "A compromise solution for the multiobjective stochastic linear programming under partial uncertainty," European Journal of Operational Research, Elsevier, vol. 202(1), pages 55-59, April.
    5. Florian Methling & Rüdiger Nitzsch, 2020. "Tailor-made thematic portfolios: a core satellite optimization," Journal of Global Optimization, Springer, vol. 76(2), pages 317-331, February.
    6. Mir Seyed Mohammad Mohsen Emamat & Caroline Maria de Miranda Mota & Mohammad Reza Mehregan & Mohammad Reza Sadeghi Moghadam & Philippe Nemery, 2022. "Using ELECTRE-TRI and FlowSort methods in a stock portfolio selection context," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    7. Abdelaziz, Fouad Ben, 2012. "Solution approaches for the multiobjective stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 1-16.
    8. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    9. Utz, Sebastian & Wimmer, Maximilian & Steuer, Ralph E., 2015. "Tri-criterion modeling for constructing more-sustainable mutual funds," European Journal of Operational Research, Elsevier, vol. 246(1), pages 331-338.
    10. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    11. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    12. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    13. Rafael Rodríguez & Mariano Luque & Mercedes González, 2011. "Portfolio selection in the Spanish stock market by interactive multiobjective programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 213-231, July.
    14. Adolfo Hilario-Caballero & Ana Garcia-Bernabeu & Jose Vicente Salcedo & Marisa Vercher, 2020. "Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach," IJERPH, MDPI, vol. 17(17), pages 1-15, August.
    15. Javier León & Justo Puerto & Begoña Vitoriano, 2020. "A Risk-Aversion Approach for the Multiobjective Stochastic Programming Problem," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    16. Nomeda Dobrovolskienė & Rima Tamošiūnienė, 2016. "Sustainability-Oriented Financial Resource Allocation in a Project Portfolio through Multi-Criteria Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    17. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    18. Utz, Sebastian & Wimmer, Maximilian & Hirschberger, Markus & Steuer, Ralph E., 2014. "Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds," European Journal of Operational Research, Elsevier, vol. 234(2), pages 491-498.
    19. Davide Lauria & W. Brent Lindquist & Stefan Mittnik & Svetlozar T. Rachev, 2022. "ESG-Valued Portfolio Optimization and Dynamic Asset Pricing," Papers 2206.02854, arXiv.org.
    20. Yue Qi & Yue Wang & Jianing Huang & Yushu Zhang, 2024. "Analytical Shortcuts to Multiple-Objective Portfolio Optimization: Investigating the Non-Negativeness of Portfolio Weight Vectors of Equality-Constraint-Only Models and Implications for Capital Asset ," Mathematics, MDPI, vol. 12(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-016-2298-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.