IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v249y2017i1d10.1007_s10479-014-1760-x.html
   My bibliography  Save this article

Contingency-constrained unit commitment with post-contingency corrective recourse

Author

Listed:
  • Richard Li-Yang Chen

    (Sandia National Laboratories)

  • Neng Fan

    (University of Arizona)

  • Ali Pinar

    (Sandia National Laboratories)

  • Jean-Paul Watson

    (Sandia National Laboratories)

Abstract

We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an $$N$$ N – $$k$$ k – $$\varvec{\varepsilon }$$ ε reliability criterion. This reliability criterion is a generalization of the well-known $$N$$ N – $$k$$ k criterion and dictates that at least $$(1-\varepsilon _j)$$ ( 1 - ε j ) fraction of the total system demand (for $$j = 1,\ldots , k$$ j = 1 , … , k ) must be met following the failure of $$k$$ k or fewer system components. We refer to this problem as the contingency-constrained unit commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network. These studies demonstrate the effectiveness of our proposed methods relative to current state-of-the-art.

Suggested Citation

  • Richard Li-Yang Chen & Neng Fan & Ali Pinar & Jean-Paul Watson, 2017. "Contingency-constrained unit commitment with post-contingency corrective recourse," Annals of Operations Research, Springer, vol. 249(1), pages 381-407, February.
  • Handle: RePEc:spr:annopr:v:249:y:2017:i:1:d:10.1007_s10479-014-1760-x
    DOI: 10.1007/s10479-014-1760-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1760-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1760-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    2. Qipeng Zheng & Jianhui Wang & Panos Pardalos & Yongpei Guan, 2013. "A decomposition approach to the two-stage stochastic unit commitment problem," Annals of Operations Research, Springer, vol. 210(1), pages 387-410, November.
    3. Jennifer Dinter & Steffen Rebennack & Josef Kallrath & Paul Denholm & Alexandra Newman, 2013. "The unit commitment model with concave emissions costs: a hybrid Benders’ Decomposition with nonconvex master problems," Annals of Operations Research, Springer, vol. 210(1), pages 361-386, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel A. Zuniga Vazquez & Jose L. Ruiz Duarte & Neng Fan & Feng Qiu, 2022. "N-1-1 contingency-constrained unit commitment with renewable integration and corrective actions," Annals of Operations Research, Springer, vol. 316(1), pages 493-511, September.
    2. Kathryn M. Schumacher & Amy E. M. Cohn & Richard Li-Yang Chen, 2017. "Algorithm for the N -2 Security-Constrained Unit Commitment Problem with Transmission Switching," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 645-659, November.
    3. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimization of time constrained N-version programming service components with competing task execution and version corruption processes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.
    3. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    4. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    5. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    6. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    7. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    8. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    9. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    10. Scioletti, Michael S. & Goodman, Johanna K. & Kohl, Paul A. & Newman, Alexandra M., 2016. "A physics-based integer-linear battery modeling paradigm," Applied Energy, Elsevier, vol. 176(C), pages 245-257.
    11. Yin, S. & Wang, J. & Li, Z. & Fang, X., 2021. "State-of-the-art short-term electricity market operation with solar generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    13. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    14. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    15. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    16. Su, Wenjing & Blumsack, Seth & Webster, Mort, 2024. "A stochastic optimization framework to planing for geographically correlated failures in coupled natural gas and electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    19. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Minimization of Expected User Losses Considering Co-resident Attacks in Cloud System with Task Replication and Cancellation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle & R. Kevin Wood, 2018. "Assessing and Improving the Operational Resilience of a Large Highway Infrastructure System to Worst-Case Losses," Transportation Science, INFORMS, vol. 52(4), pages 1012-1034, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:249:y:2017:i:1:d:10.1007_s10479-014-1760-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.