IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v246y2016i1d10.1007_s10479-015-1886-5.html
   My bibliography  Save this article

Balancing the arrival times of users in a two-stage location problem

Author

Listed:
  • Maria Barbati

    (University of Portsmouth)

  • Giuseppe Bruno

    (University of Naples Federico II)

  • Alfredo Marín

    (Universidad de Murcia)

Abstract

There has been a number of facility location problems dealing with the introduction of the equity issue in the travel distances distribution. In this paper we analyze a new aspect of equity concerning the distribution of the arrival times of customers. Given a depot and a set of demand points generating flow which also represent potential locations, we consider a discrete two-stage location problem whose aim is to locate a given number of facilities and to allocate the demand points to a facility. We assume as objective the maximization of the minimum difference between two consecutive arrival times of flows to the depot through the patronized facility. This particular equity measure is introduced in order to reduce risks of congestion in the dynamic of flow arrivals at the common destination. The problem is described through two Integer Programming formulations. Computational results for solution methods based on both formulations are then shown and analyzed.

Suggested Citation

  • Maria Barbati & Giuseppe Bruno & Alfredo Marín, 2016. "Balancing the arrival times of users in a two-stage location problem," Annals of Operations Research, Springer, vol. 246(1), pages 273-288, November.
  • Handle: RePEc:spr:annopr:v:246:y:2016:i:1:d:10.1007_s10479-015-1886-5
    DOI: 10.1007/s10479-015-1886-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1886-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1886-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oded Berman & Edward H. Kaplan, 1990. "Equity Maximizing Facility Location Schemes," Transportation Science, INFORMS, vol. 24(2), pages 137-144, May.
    2. Opher Baron & Oded Berman & Dmitry Krass, 2008. "Facility Location with Stochastic Demand and Constraints on Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 484-505, August.
    3. Drezner, Zvi & Wesolowsky, George O., 2001. "On the collection depots location problem," European Journal of Operational Research, Elsevier, vol. 130(3), pages 510-518, May.
    4. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    5. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    6. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    7. Cruz Lopez-de-los-Mozos, M. & Mesa, Juan A., 2001. "The maximum absolute deviation measure in location problems on networks," European Journal of Operational Research, Elsevier, vol. 135(1), pages 184-194, November.
    8. T Drezner & Z Drezner & S Salhi, 2006. "A multi-objective heuristic approach for the casualty collection points location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 727-734, June.
    9. Yoshiaki Ohsawa & Naoya Ozaki & Frank Plastria, 2008. "Equity-Efficiency Bicriteria Location with Squared Euclidean Distances," Operations Research, INFORMS, vol. 56(1), pages 79-87, February.
    10. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    11. Alfredo Marín & Stefan Nickel & Sebastian Velten, 2010. "An extended covering model for flexible discrete and equity location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 125-163, February.
    12. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    13. Burkey, M.L. & Bhadury, J. & Eiselt, H.A., 2012. "A location-based comparison of health care services in four U.S. states with efficiency and equity," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 157-163.
    14. O Berman & R Huang, 2004. "Minisum collection depots location problem with multiple facilities on a network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 769-779, July.
    15. Baron, Opher & Berman, Oded & Krass, Dmitry & Wang, Qian, 2007. "The equitable location problem on the plane," European Journal of Operational Research, Elsevier, vol. 183(2), pages 578-590, December.
    16. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian & Yates, Derek, 2006. "Load balancing and capacity constraints in a hierarchical location model," European Journal of Operational Research, Elsevier, vol. 172(2), pages 631-646, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    2. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    3. Rongbing Huang, 2016. "A short note on locating facilities on a path to minimize load range equity measure," Annals of Operations Research, Springer, vol. 246(1), pages 363-369, November.
    4. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    5. Jesús Sánchez-Oro & Ana D. López-Sánchez & Anna Martínez-Gavara & Alfredo G. Hernández-Díaz & Abraham Duarte, 2021. "A Hybrid Strategic Oscillation with Path Relinking Algorithm for the Multiobjective k -Balanced Center Location Problem," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    6. Marín, Alfredo, 2011. "The discrete facility location problem with balanced allocation of customers," European Journal of Operational Research, Elsevier, vol. 210(1), pages 27-38, April.
    7. Donghai Wang & Menghao Xi & Yingzhen Chen, 2020. "A Dynamic Shelter Location and Victim Resettlement Model Considering Equitable Waiting Costs," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    8. Chung, Byung Do & Park, Sungjae & Kwon, Changhyun, 2018. "Equitable distribution of recharging stations for electric vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 1-11.
    9. Włodzimierz Ogryczak, 2009. "Inequality measures and equitable locations," Annals of Operations Research, Springer, vol. 167(1), pages 61-86, March.
    10. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    11. Akoluk, Damla & Karsu, Özlem, 2022. "Ensuring multidimensional equality in public service," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    13. Lin, Yun Hui & Tian, Qingyun, 2023. "Facility location and pricing problem: Discretized mill price and exact algorithms," European Journal of Operational Research, Elsevier, vol. 308(2), pages 568-580.
    14. Sachin Jayaswal & Navneet Vidyarthi, 2017. "Facility location under service level constraints for heterogeneous customers," Annals of Operations Research, Springer, vol. 253(1), pages 275-305, June.
    15. Zhengna Song & Tinggan Yan & Yunjian Ge, 2018. "Spatial Equilibrium Allocation of Urban Large Public General Hospitals Based on the Welfare Maximization Principle: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    16. Yoon Ha Lee & Ji Soo Lee & Seung Chan Baek & Won Hwa Hong, 2020. "Spatial Equity with Census Population Data vs. Floating Population Data: The Distribution of Earthquake Evacuation Shelters in Daegu, South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    17. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    18. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    19. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    20. Ljubić, Ivana & Pozo, Miguel A. & Puerto, Justo & Torrejón, Alberto, 2024. "Benders decomposition for the discrete ordered median problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 858-874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:246:y:2016:i:1:d:10.1007_s10479-015-1886-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.