IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v244y2016i1d10.1007_s10479-015-1871-z.html
   My bibliography  Save this article

Over-time and over-level replacement policies with random working cycles

Author

Listed:
  • Xufeng Zhao

    (Qatar University)

  • Toshio Nakagawa

    (Aichi Institute of Technology)

Abstract

When a unit is running successive works with cycle times, it would be uneconomical or impractical to do maintenances during any working cycle. This paper firstly reviews two replacement models proposed in literatures as follows: (1) replacement is done over a planned time $$T$$ T at the completion of the working cycle, which is called over-time replacement, and (2) replacement is done over damage level $$Z$$ Z at the completion of the forthcoming working cycle, which is called over-level replacement. From the viewpoint of replacement cost savings, we secondly focus on comparisons of over-time replacement and its standard age-based policy, over-level replacement and its standard condition-based policy. Furthermore, modified over-time and over-level replacement costs are obtained to specify critical points at which these new replacements, rather than their standard polices, would save more replacement costs. Discussions in this paper are given analytically and computed numerically.

Suggested Citation

  • Xufeng Zhao & Toshio Nakagawa, 2016. "Over-time and over-level replacement policies with random working cycles," Annals of Operations Research, Springer, vol. 244(1), pages 103-116, September.
  • Handle: RePEc:spr:annopr:v:244:y:2016:i:1:d:10.1007_s10479-015-1871-z
    DOI: 10.1007/s10479-015-1871-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1871-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1871-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, June.
    2. Chen, Jinyuan & Li, Zehui, 2008. "An extended extreme shock maintenance model for a deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1123-1129.
    3. Xiao Liu & Jingrui Li & Khalifa Al-Khalifa & Abdelmagid Hamouda & David Coit & Elsayed Elsayed, 2013. "Condition-based maintenance for continuously monitored degrading systems with multiple failure modes," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 422-435.
    4. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    5. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    6. Hongzhou Wang & Hoang Pham, 2006. "Reliability and Optimal Maintenance," Springer Series in Reliability Engineering, Springer, number 978-1-84628-325-3, June.
    7. Chien, Yu-Hung & Sheu, Shey-Huei & Zhang, Zhe George, 2012. "Optimal maintenance policy for a system subject to damage in a discrete time process," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 1-10.
    8. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    9. Chien, Yu-Hung & Sheu, Shey-Huei, 2006. "Extended optimal age-replacement policy with minimal repair of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 174(1), pages 169-181, October.
    10. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    11. Riccardo Manzini & Alberto Regattieri & Hoang Pham & Emilio Ferrari, 2010. "Maintenance for Industrial Systems," Springer Series in Reliability Engineering, Springer, number 978-1-84882-575-8, June.
    12. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    2. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Jiang, Tao & Liu, Yu, 2020. "Selective maintenance strategy for systems executing multiple consecutive missions with uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    2. Chien, Yu-Hung & Sheu, Shey-Huei & Zhang, Zhe George, 2012. "Optimal maintenance policy for a system subject to damage in a discrete time process," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 1-10.
    3. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    4. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    5. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    7. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2017. "Comparisons of replacement policies with periodic times and repair numbers," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 161-170.
    8. van der Weide, J.A.M. & Pandey, M.D., 2011. "Stochastic analysis of shock process and modeling of condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 619-626.
    9. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.
    10. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    11. Caiyun Niu & Xiaolin Liang & Bingfeng Ge & Xue Tian & Yingwu Chen, 2016. "Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process," Annals of Operations Research, Springer, vol. 244(1), pages 49-66, September.
    12. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    14. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    15. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    16. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Rassoul Noorossana & Kamyar Sabri-Laghaie, 2015. "Reliability and maintenance models for a dependent competing-risk system with multiple time-scales," Journal of Risk and Reliability, , vol. 229(2), pages 131-142, April.
    18. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    19. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    20. Azadeh, A. & Asadzadeh, S.M. & Salehi, N. & Firoozi, M., 2015. "Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 357-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:244:y:2016:i:1:d:10.1007_s10479-015-1871-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.