IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v226y2015i1p527-55010.1007-s10479-014-1721-4.html
   My bibliography  Save this article

Random-order-of-service for heterogeneous customers: waiting time analysis

Author

Listed:
  • W. Rogiest
  • K. Laevens
  • J. Walraevens
  • H. Bruneel

Abstract

In operations research and networking problems, random-order-of-service (ROS) provides a well-known alternative to the classic first-come-first-served (FCFS) policy. Models with ROS policy are typically harder to analyze than their FCFS counterparts, with some performance measures notoriously hard to obtain. While significant progress has been realized in the analysis of random-order-of-service models with homogeneous customer service demands, the impact of heterogeneous customer demand is largely unknown. The current contribution studies this impact, with a discrete-time random-order-of-service queue serving customers with heterogeneous demands. Customer service times are independent random variables with type-dependent distribution. The numbers of new arrivals in each slot are independent and identically distributed over time, but can be type-correlated within a single slot. This corresponds to bursty input traffic generated by a finite number of sources, with one source for each type. The burstiness consists in correlation among sources (or types): the rate at which a source generates customers depends on the instantaneous rate of all other sources (and vice versa). Using a transform-based approach yields closed-form formulas for the first few moments of the customer waiting time. Facilitator is a multi-stage description of the customer sojourn, which allows establishing a relation between the so-called conditional waiting time and the actual steady-state customer waiting time. A somewhat unexpected result shows that, under certain conditions on the arrival and service processes, the random-order-of-service policy outperforms the first-come-first-served policy in terms of mean waiting time. A number of numerical examples illustrate this finding. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • W. Rogiest & K. Laevens & J. Walraevens & H. Bruneel, 2015. "Random-order-of-service for heterogeneous customers: waiting time analysis," Annals of Operations Research, Springer, vol. 226(1), pages 527-550, March.
  • Handle: RePEc:spr:annopr:v:226:y:2015:i:1:p:527-550:10.1007/s10479-014-1721-4
    DOI: 10.1007/s10479-014-1721-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1721-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1721-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas E. Phipps, 1956. "Machine Repair as a Priority Waiting-Line Problem," Operations Research, INFORMS, vol. 4(1), pages 76-85, February.
    2. Caulkins, Jonathan P., 2010. "Might randomization in queue discipline be useful when waiting cost is a concave function of waiting time?," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 19-24, March.
    3. John D. C. Little, 1961. "A Proof for the Queuing Formula: L = (lambda) W," Operations Research, INFORMS, vol. 9(3), pages 383-387, June.
    4. D. Y. Barrer, 1957. "Queuing with Impatient Customers and Indifferent Clerks," Operations Research, INFORMS, vol. 5(5), pages 644-649, October.
    5. D. Y. Barrer, 1957. "Queuing with Impatient Customers and Ordered Service," Operations Research, INFORMS, vol. 5(5), pages 650-656, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souvik Ghosh & A. D. Banik, 2018. "Computing conditional sojourn time of a randomly chosen tagged customer in a $$\textit{BMAP/MSP/}1$$ BMAP / MSP / 1 queue under random order service discipline," Annals of Operations Research, Springer, vol. 261(1), pages 185-206, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliran Sherzer & Yoav Kerner, 2018. "Customers’ abandonment strategy in an M / G / 1 queue," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 65-87, October.
    2. Walid Nasrallah & Raymond Levitt & Peter Glynn, 2003. "Interaction Value Analysis: When Structured Communication Benefits Organizations," Organization Science, INFORMS, vol. 14(5), pages 541-557, October.
    3. Asmita Tamuli & Dhruba Das & Amit Choudhury, 2024. "Optimizing the Performance of Multi-server Heterogeneous Queueing Systems with Dynamic Customer Behaviour," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 366-414, November.
    4. Chai, Xudong & Liu, Liwei & Chang, Baoxian & Jiang, Tao & Wang, Zhen, 2019. "On a batch matching system with impatient servers and boundedly rational customers," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 308-328.
    5. Shaul K. Bar-Lev & Hans Blanc & Onno Boxma & Guido Janssen & David Perry, 2013. "Tandem Queues with Impatient Customers for Blood Screening Procedures," Methodology and Computing in Applied Probability, Springer, vol. 15(2), pages 423-451, June.
    6. Bolandifar, Ehsan & DeHoratius, Nicole & Olsen, Tava, 2023. "Modeling abandonment behavior among patients," European Journal of Operational Research, Elsevier, vol. 306(1), pages 243-254.
    7. Pala, Ali & Zhuang, Jun, 2018. "Security screening queues with impatient applicants: A new model with a case study," European Journal of Operational Research, Elsevier, vol. 265(3), pages 919-930.
    8. Veena Goswami & Gopinath Panda, 2024. "Analysis of Renewal Batch Arrival Queues with Multiple Vacations and Geometric Abandonment," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-27, June.
    9. Yoshiaki Inoue & Onno Boxma & David Perry & Shelley Zacks, 2018. "Analysis of $$\hbox {M}^{\mathrm {x}}/\hbox {G}/1$$ M x / G / 1 queues with impatient customers," Queueing Systems: Theory and Applications, Springer, vol. 89(3), pages 303-350, August.
    10. Ken’ichi Kawanishi & Tetsuya Takine, 2016. "MAP/M/c and M/PH/c queues with constant impatience times," Queueing Systems: Theory and Applications, Springer, vol. 82(3), pages 381-420, April.
    11. Nasrallah, Walid F., 2009. "How pre-emptive priority affects completion rate in an M/M/1 queue with Poisson reneging," European Journal of Operational Research, Elsevier, vol. 193(1), pages 317-320, February.
    12. Pel, Adam J. & Chaniotakis, Emmanouil, 2017. "Stochastic user equilibrium traffic assignment with equilibrated parking search routes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 123-139.
    13. Hayriye Ayhan, 2022. "Server assignment policies in queues with customer abandonments," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 393-395, April.
    14. Bong Dae Choi & Bara Kim & Dongbi Zhu, 2004. "MAP/M/c Queue with Constant Impatient Time," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 309-325, May.
    15. Dengpan Liu & Subodha Kumar & Vijay S. Mookerjee, 2012. "Advertising Strategies in Electronic Retailing: A Differential Games Approach," Information Systems Research, INFORMS, vol. 23(3-part-2), pages 903-917, September.
    16. Kouki, Chaaben & Legros, Benjamin & Zied Babai, M. & Jouini, Oualid, 2020. "Analysis of base-stock perishable inventory systems with general lifetime and lead-time," European Journal of Operational Research, Elsevier, vol. 287(3), pages 901-915.
    17. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    18. Yifan Liu & Lawrence M. Wein, 2008. "A Queueing Analysis to Determine How Many Additional Beds Are Needed for the Detention and Removal of Illegal Aliens," Management Science, INFORMS, vol. 54(1), pages 1-15, January.
    19. Mehrdad Moshtagh & Jafar Fathali & James MacGregor Smith & Nezam Mahdavi-Amiri, 2019. "Finding an optimal core on a tree network with M/G/c/c state-dependent queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 115-142, February.
    20. M. A. C. Almeida & F. R. B. Cruz & F. L. P. Oliveira & G. Souza, 2020. "Bias correction for estimation of performance measures of a Markovian queue," Operational Research, Springer, vol. 20(2), pages 943-958, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:226:y:2015:i:1:p:527-550:10.1007/s10479-014-1721-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.