IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p265-28610.1007-s10479-012-1203-5.html
   My bibliography  Save this article

Balancing of simple assembly lines under variations of task processing times

Author

Listed:
  • Evgeny Gurevsky
  • Olga Battaïa
  • Alexandre Dolgui

Abstract

One of the simple assembly line balancing problems (SALBPs), known as SALBP-E, is considered. It consists in assigning a given set V={1,2,…,n} of elementary tasks to linearly ordered workstations with respect to precedence and capacity restrictions while minimizing the following product: number of used workstations × working time on the most loaded one. The stability of feasible and optimal solutions for this problem with regard to possible variations of the processing time of certain tasks is investigated. Two heuristic procedures finding a compromise between the efficiency and the considered stability measure of studied solutions are suggested and evaluated on known benchmarks. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Evgeny Gurevsky & Olga Battaïa & Alexandre Dolgui, 2012. "Balancing of simple assembly lines under variations of task processing times," Annals of Operations Research, Springer, vol. 201(1), pages 265-286, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:265-286:10.1007/s10479-012-1203-5
    DOI: 10.1007/s10479-012-1203-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1203-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1203-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Marek Libura & Yury Nikulin, 2006. "Stability and accuracy functions in multicriteria linear combinatorial optimization problems," Annals of Operations Research, Springer, vol. 147(1), pages 255-267, October.
    3. Urban, Timothy L. & Chiang, Wen-Chyuan, 2006. "An optimal piecewise-linear program for the U-line balancing problem with stochastic task times," European Journal of Operational Research, Elsevier, vol. 168(3), pages 771-782, February.
    4. Yuri Sotskov & Albert Wagelmans & Frank Werner, 1998. "On the calculation of the stability radiusof an optimal or an approximate schedule," Annals of Operations Research, Springer, vol. 83(0), pages 213-252, October.
    5. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    6. Sotskov, Yuri N. & Dolgui, Alexandre & Portmann, Marie-Claude, 2006. "Stability analysis of an optimal balance for an assembly line with fixed cycle time," European Journal of Operational Research, Elsevier, vol. 168(3), pages 783-797, February.
    7. M. Libura, 1999. "On accuracy of solutions for discrete optimization problems with perturbed coefficientsof the objective function," Annals of Operations Research, Springer, vol. 86(0), pages 53-62, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Tsung-Chyan & Sotskov, Yuri N. & Dolgui, Alexandre, 2019. "The stability radius of an optimal line balance with maximum efficiency for a simple assembly line," European Journal of Operational Research, Elsevier, vol. 274(2), pages 466-481.
    2. Thiago Cantos Lopes & Celso Gustavo Stall Sikora & Adalberto Sato Michels & Leandro Magatão, 2020. "Mixed-model assembly lines balancing with given buffers and product sequence: model, formulation comparisons, and case study," Annals of Operations Research, Springer, vol. 286(1), pages 475-500, March.
    3. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    4. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    5. Shibasaki, Rui S. & Rossi, André & Gurevsky, Evgeny, 2024. "A new upper bound based on Dantzig-Wolfe decomposition to maximize the stability radius of a simple assembly line under uncertainty," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1015-1030.
    6. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    7. Can B. Kalayci & Olcay Polat & Surendra M. Gupta, 2016. "A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem," Annals of Operations Research, Springer, vol. 242(2), pages 321-354, July.
    8. Pirogov, Aleksandr & Gurevsky, Evgeny & Rossi, André & Dolgui, Alexandre, 2021. "Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions," European Journal of Operational Research, Elsevier, vol. 290(3), pages 946-955.
    9. Lai, Tsung-Chyan & Sotskov, Yuri N. & Dolgui, Alexandre & Zatsiupa, Aksana, 2016. "Stability radii of optimal assembly line balances with a fixed workstation set," International Journal of Production Economics, Elsevier, vol. 182(C), pages 356-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emel Kızılkaya Aydoğan & Yılmaz Delice & Uğur Özcan & Cevriye Gencer & Özkan Bali, 2019. "Balancing stochastic U-lines using particle swarm optimization," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 97-111, January.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    4. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    5. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    6. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    7. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    8. Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.
    9. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    10. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    11. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    12. Sabuncuoglu, Ihsan & Erel, Erdal & Alp, Arda, 2009. "Ant colony optimization for the single model U-type assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 287-300, August.
    13. Shibasaki, Rui S. & Rossi, André & Gurevsky, Evgeny, 2024. "A new upper bound based on Dantzig-Wolfe decomposition to maximize the stability radius of a simple assembly line under uncertainty," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1015-1030.
    14. Lai, Tsung-Chyan & Sotskov, Yuri N. & Dolgui, Alexandre, 2019. "The stability radius of an optimal line balance with maximum efficiency for a simple assembly line," European Journal of Operational Research, Elsevier, vol. 274(2), pages 466-481.
    15. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    16. Lersteau, Charly & Rossi, André & Sevaux, Marc, 2016. "Robust scheduling of wireless sensor networks for target tracking under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 407-417.
    17. Beste Desticioglu & Hatice Calipinar & Bahar Ozyoruk & Erdinc Koc, 2022. "Model for Reverse Logistic Problem of Recycling under Stochastic Demand," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    18. Lai, Tsung-Chyan & Sotskov, Yuri N. & Dolgui, Alexandre & Zatsiupa, Aksana, 2016. "Stability radii of optimal assembly line balances with a fixed workstation set," International Journal of Production Economics, Elsevier, vol. 182(C), pages 356-371.
    19. Lambert, Alfred J.D., 2006. "Generation of assembly graphs by systematic analysis of assembly structures," European Journal of Operational Research, Elsevier, vol. 168(3), pages 932-951, February.
    20. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:265-286:10.1007/s10479-012-1203-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.