IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v141y2006i1p139-16210.1007-s10479-006-5297-5.html
   My bibliography  Save this article

Threshold policies for controlled retrial queues with heterogeneous servers

Author

Listed:
  • Dimitri frosinin
  • L. Breuer

Abstract

Retrial queues are an important stochastic model for many telecommunication systems. In order to construct competitive networks it is necessary to investigate ways for optimal control. This paper considers K -server retrial systems with arrivals governed by Neut' Markovian arrival process, and heterogeneous service time distributions of general phase-type. We show that the optimal policy which minimizes the number of customers in the system is of a threshold type with threshold levels depending on the states of the arrival and service processes. An algorithm for the numerical evaluation of an optimal control is proposed on the basis of Howar's iteration algorithm. Finally, some numerical results will be given in order to illustrate the system dynamics. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Dimitri frosinin & L. Breuer, 2006. "Threshold policies for controlled retrial queues with heterogeneous servers," Annals of Operations Research, Springer, vol. 141(1), pages 139-162, January.
  • Handle: RePEc:spr:annopr:v:141:y:2006:i:1:p:139-162:10.1007/s10479-006-5297-5
    DOI: 10.1007/s10479-006-5297-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-5297-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-5297-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    2. V. Rykov & M. Yu. Kitaev, 1995. "Controlled queueing systems," International Journal of Stochastic Analysis, Hindawi, vol. 8, pages 1-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciro D’Apice & Maria Pia D’Arienzo & Alexander Dudin & Rosanna Manzo, 2023. "Optimal Hysteresis Control via a Queuing System with Two Heterogeneous Energy-Consuming Servers," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    2. Velika I. Dragieva, 2016. "Steady state analysis of the M/G/1//N queue with orbit of blocked customers," Annals of Operations Research, Springer, vol. 247(1), pages 121-140, December.
    3. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    4. Josef Weichbold & Anastasia Winkler, 2010. "Optimal stochastic scheduling in a single server biclass retrial queueing system," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 405-431, December.
    5. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    6. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Chen & Xianping Guo & Zhong-Wei Liao, 2022. "Optimal Stopping Time on Semi-Markov Processes with Finite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 408-439, August.
    2. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    3. Vladimir Rykov & Olga Kochueva & Yaroslav Rykov, 2021. "Preventive Maintenance of the k -out-of- n System with Respect to Cost-Type Criterion," Mathematics, MDPI, vol. 9(21), pages 1-15, November.
    4. Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.
    5. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    6. Yi Zhang, 2018. "On the Nonexplosion and Explosion for Nonhomogeneous Markov Pure Jump Processes," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1322-1355, September.
    7. Wei, Qingda, 2019. "Nonzero-sum risk-sensitive finite-horizon continuous-time stochastic games," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 96-104.
    8. Andrzej Chydzinski & Pawel Mrozowski, 2016. "Queues with Dropping Functions and General Arrival Processes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-23, March.
    9. Lin, Lei & Wang, Qian & Sadek, Adel W., 2014. "Border crossing delay prediction using transient multi-server queueing models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 65-91.
    10. B. Houdt & J. Velthoven & C. Blondia, 2008. "QBD Markov chains on binomial-like trees and its application to multilevel feedback queues," Annals of Operations Research, Springer, vol. 160(1), pages 3-18, April.
    11. Daniel Adelman & Angelo J. Mancini, 2016. "Optimality of Quasi-Open-Loop Policies for Discounted Semi-Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1222-1247, November.
    12. Subrata Golui & Chandan Pal & Subhamay Saha, 2022. "Continuous-Time Zero-Sum Games for Markov Decision Processes with Discounted Risk-Sensitive Cost Criterion," Dynamic Games and Applications, Springer, vol. 12(2), pages 485-512, June.
    13. Qingda Wei, 2017. "Finite approximation for finite-horizon continuous-time Markov decision processes," 4OR, Springer, vol. 15(1), pages 67-84, March.
    14. Subrata Golui & Chandan Pal, 2022. "Risk-sensitive discounted cost criterion for continuous-time Markov decision processes on a general state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 219-247, April.
    15. Qingda Wei & Xian Chen, 2022. "Discounted stochastic games for continuous-time jump processes with an uncountable state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 187-218, April.
    16. Casale, Giuliano & Sansottera, Andrea & Cremonesi, Paolo, 2016. "Compact Markov-modulated models for multiclass trace fitting," European Journal of Operational Research, Elsevier, vol. 255(3), pages 822-833.
    17. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    18. Peter Buchholz & Jan Kriege, 2017. "Fitting correlated arrival and service times and related queueing performance," Queueing Systems: Theory and Applications, Springer, vol. 85(3), pages 337-359, April.
    19. Mark, Brian L. & Ephraim, Yariv, 2013. "An EM algorithm for continuous-time bivariate Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 504-517.
    20. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:141:y:2006:i:1:p:139-162:10.1007/s10479-006-5297-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.