IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v106y2022i2d10.1007_s10182-021-00419-3.html
   My bibliography  Save this article

A Bayesian nonparametric multi-sample test in any dimension

Author

Listed:
  • Luai Al-Labadi

    (University of Toronto Mississauga)

  • Forough Fazeli Asl

    (Isfahan University of Technology)

  • Zahra Saberi

    (Isfahan University of Technology)

Abstract

This paper considers a general Bayesian test for the multi-sample problem. Specifically, for M independent samples, the interest is to determine whether the M samples are generated from the same multivariate population. First, M Dirichlet processes are considered as priors for the true distributions generated the data. Then, the concentration of the distribution of the total distance between the M posterior processes is compared to the concentration of the distribution of the total distance between the M prior processes through the relative belief ratio. The total distance between processes is established based on the energy distance. Various interesting theoretical results of the approach are derived. Several examples covering the high dimensional case are considered to illustrate the approach.

Suggested Citation

  • Luai Al-Labadi & Forough Fazeli Asl & Zahra Saberi, 2022. "A Bayesian nonparametric multi-sample test in any dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 217-242, June.
  • Handle: RePEc:spr:alstar:v:106:y:2022:i:2:d:10.1007_s10182-021-00419-3
    DOI: 10.1007/s10182-021-00419-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00419-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00419-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subhadeep Mukhopadhyay & Kaijun Wang, 2020. "A nonparametric approach to high-dimensional k-sample comparison problems," Biometrika, Biometrika Trust, vol. 107(3), pages 555-572.
    2. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    3. Luai Al-Labadi & Zeynep Baskurt & Michael Evans, 2017. "Goodness of fit for the logistic regression model using relative belief," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-12, December.
    4. Paul R. Rosenbaum, 2005. "An exact distribution‐free test comparing two multivariate distributions based on adjacency," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 515-530, September.
    5. Petrie, Adam, 2016. "Graph-theoretic multisample tests of equality in distribution for high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 145-158.
    6. Heller, Ruth & Jensen, Shane T. & Rosenbaum, Paul R. & Small, Dylan S., 2010. "Sensitivity Analysis for the Cross-Match Test, With Applications in Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1005-1013.
    7. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    8. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    3. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    4. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    5. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    6. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    7. Mondal, Pronoy K. & Biswas, Munmun & Ghosh, Anil K., 2015. "On high dimensional two-sample tests based on nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 168-178.
    8. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.
    10. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    12. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    13. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    14. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.
    15. García, Jorge Luis & Heckman, James J. & Ziff, Anna L., 2018. "Gender differences in the benefits of an influential early childhood program," European Economic Review, Elsevier, vol. 109(C), pages 9-22.
    16. Geng, Sen & Peng, Yujia & Shachat, Jason & Zhong, Huizhen, 2015. "Adolescents, cognitive ability, and minimax play," Economics Letters, Elsevier, vol. 128(C), pages 54-58.
    17. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    18. Modarres, Reza, 2016. "Multivariate Poisson interpoint distances," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 113-123.
    19. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    20. García, Jorge Luis & Heckman, James J. & Ronda, Victor, 2021. "The Lasting Effects of Early Childhood Education on Promoting the Skills and Social Mobility of Disadvantaged African Americans," IZA Discussion Papers 14575, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:106:y:2022:i:2:d:10.1007_s10182-021-00419-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.