IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i3p555-572..html
   My bibliography  Save this article

A nonparametric approach to high-dimensional k-sample comparison problems

Author

Listed:
  • Subhadeep Mukhopadhyay
  • Kaijun Wang

Abstract

SummaryHigh-dimensional $k$-sample comparison is a common task in applications. We construct a class of easy-to-implement distribution-free tests based on new nonparametric tools and unexplored connections with spectral graph theory. The test is shown to have various desirable properties and a characteristic exploratory flavour that has practical consequences for statistical modelling. Numerical examples show that the proposed method works surprisingly well across a broad range of realistic situations.

Suggested Citation

  • Subhadeep Mukhopadhyay & Kaijun Wang, 2020. "A nonparametric approach to high-dimensional k-sample comparison problems," Biometrika, Biometrika Trust, vol. 107(3), pages 555-572.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:555-572.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa015
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    2. Luai Al-Labadi & Forough Fazeli Asl & Zahra Saberi, 2022. "A Bayesian nonparametric multi-sample test in any dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 217-242, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:555-572.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.