A transition model for analyzing multivariate longitudinal data using Gaussian copula approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-018-00346-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David Kirk, 1973. "On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 38(2), pages 259-268, June.
- Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
- Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
- Greene, W.H., 1996. "Marginal Effects in the Bivariate Probit Model," Working Papers 96-11, New York University, Leonard N. Stern School of Business, Department of Economics.
- T. Baghfalaki & M. Ganjali & D. Berridge, 2014. "Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1934-1955, September.
- Peter X.-K. Song & Mingyao Li & Ying Yuan, 2009. "Joint Regression Analysis of Correlated Data Using Gaussian Copulas," Biometrics, The International Biometric Society, vol. 65(1), pages 60-68, March.
- M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
- Jason Roy & Xihong Lin, 2000. "Latent Variable Models for Longitudinal Data with Multiple Continuous Outcomes," Biometrics, The International Biometric Society, vol. 56(4), pages 1047-1054, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
- Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
- Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
- Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
- Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
- Paulo Horta & Carlos Mendes & Isabel Vieira, 2010.
"Contagion effects of the subprime crisis in the European NYSE Euronext markets,"
Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(2), pages 115-140, August.
- Paulo Horta & Carlos Mendes & Isabel Vieira, 2009. "Contagion Effects of the Subprime Crisis in the European Nyse-Euronext Markets," CEFAGE-UE Working Papers 2009_01, University of Evora, CEFAGE-UE (Portugal).
- Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
- Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
- Calabrese, Raffaella & Degl’Innocenti, Marta & Osmetti, Silvia Angela, 2017. "The effectiveness of TARP-CPP on the US banking industry: A new copula-based approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1029-1037.
- Erhardt, Tobias Michael & Czado, Claudia & Schepsmeier, Ulf, 2015. "Spatial composite likelihood inference using local C-vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 74-88.
- Cubillos-Rocha, Juan S. & Gomez-Gonzalez, Jose E. & Melo-Velandia, Luis F., 2019.
"Detecting exchange rate contagion using copula functions,"
The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 13-22.
- Juan Sebastian Cubillos-Rocha & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo-Velandia, 2018. "Detecting exchange rate contagion using copula functions," Borradores de Economia 1047, Banco de la Republica de Colombia.
- Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
- Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
- Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
- Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016.
"Goodness-of-fit test for specification of semiparametric copula dependence models,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
- Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2013. "Goodness-of-fit test for specification of semiparametric copula dependence models," SFB 649 Discussion Papers 2013-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
- Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
- Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
- Benjamin E. Leiby & Mary D. Sammel & Thomas R. Ten Have & Kevin G. Lynch, 2009. "Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 505-524, September.
More about this item
Keywords
Copula function; Joint modeling; Longitudinal study; Mixed data; Ordinal regression; Transition model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:104:y:2020:i:2:d:10.1007_s10182-018-00346-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.