IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i1d10.1007_s10463-019-00736-0.html
   My bibliography  Save this article

Some explicit solutions of c-optimal design problems for polynomial regression with no intercept

Author

Listed:
  • Holger Dette

    (Ruhr-Universität Bochum)

  • Viatcheslav B. Melas

    (St. Petersburg State University)

  • Petr Shpilev

    (St. Petersburg State University)

Abstract

In this paper, we consider the optimal design problem for extrapolation and estimation of the slope at a given point, say z, in a polynomial regression with no intercept. We provide explicit solutions of these problems in many cases and characterize those values of z, where this is not possible.

Suggested Citation

  • Holger Dette & Viatcheslav B. Melas & Petr Shpilev, 2021. "Some explicit solutions of c-optimal design problems for polynomial regression with no intercept," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 61-82, February.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:1:d:10.1007_s10463-019-00736-0
    DOI: 10.1007/s10463-019-00736-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00736-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00736-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Zhide, 2002. "D-optimal designs for polynomial regression models through origin," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 343-351, May.
    2. Holger Dette & Mong-Na Lo Huang, 2000. "Convex Optimal Designs for Compound Polynomial Extrapolation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 557-573, September.
    3. Viatcheslav Melas & Andrey Pepelyshev & Russell Cheng, 2003. "Designs for estimating an extremal point of quadratic regression models in a hyperball," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(2), pages 193-208, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Zhide, 2003. "D-optimal designs for weighted polynomial regression," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 205-213, June.
    2. Pal, Manisha & Mandal, Nripes K., 2006. "Optimum designs for optimum mixtures," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1369-1379, July.
    3. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    4. Florenz Plassmann & Neha Khanna, 2007. "Assessing the Precision of Turning Point Estimates in Polynomial Regression Functions," Econometric Reviews, Taylor & Francis Journals, vol. 26(5), pages 503-528.
    5. Kim-Hung Li & Tai-Shing Lau & Chongqi Zhang, 2005. "A note on D-optimal designs for models with and without an intercept," Statistical Papers, Springer, vol. 46(3), pages 451-458, July.
    6. Pal, Manisha & Mandal, Nripes Kumar, 2008. "Minimax designs for optimum mixtures," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 608-615, April.
    7. Chen, Ray-Bing & Wong, Weng Kee & Li, Kun-Yu, 2008. "Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1914-1921, September.
    8. Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2020. "Optimal designs for estimating individual coefficients in polynomial regression with no intercept," Statistics & Probability Letters, Elsevier, vol. 158(C).
    9. Dette, Holger & Melas, Viatcheslav B., 2008. "Optimal designs for estimating the slope of a regression," Technical Reports 2008,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:1:d:10.1007_s10463-019-00736-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.