IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v57y2002i4p343-351.html
   My bibliography  Save this article

D-optimal designs for polynomial regression models through origin

Author

Listed:
  • Fang, Zhide

Abstract

In this article we consider D-optimal designs for polynomial regression models with low-degree terms being missed, by applying the theory of canonical moments. It turns out that the optimal design places equal weight on each of the zeros of some Jacobi polynomial when the number of unknown parameters in the model is even. The procedure and examples of finding the optimal supports and weights are given when the number of unknown parameters in the model is odd.

Suggested Citation

  • Fang, Zhide, 2002. "D-optimal designs for polynomial regression models through origin," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 343-351, May.
  • Handle: RePEc:eee:stapro:v:57:y:2002:i:4:p:343-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00085-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Fu-Chuen, 1999. "Exact D-optimal designs for polynomial regression without intercept," Statistics & Probability Letters, Elsevier, vol. 44(2), pages 131-136, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.
    2. Fang, Zhide, 2003. "D-optimal designs for weighted polynomial regression," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 205-213, June.
    3. Holger Dette & Viatcheslav B. Melas & Petr Shpilev, 2021. "Some explicit solutions of c-optimal design problems for polynomial regression with no intercept," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 61-82, February.
    4. Kim-Hung Li & Tai-Shing Lau & Chongqi Zhang, 2005. "A note on D-optimal designs for models with and without an intercept," Statistical Papers, Springer, vol. 46(3), pages 451-458, July.
    5. Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2020. "Optimal designs for estimating individual coefficients in polynomial regression with no intercept," Statistics & Probability Letters, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim-Hung Li & Tai-Shing Lau & Chongqi Zhang, 2005. "A note on D-optimal designs for models with and without an intercept," Statistical Papers, Springer, vol. 46(3), pages 451-458, July.
    2. Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2020. "Optimal designs for estimating individual coefficients in polynomial regression with no intercept," Statistics & Probability Letters, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:57:y:2002:i:4:p:343-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.