IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i1d10.1007_s10463-015-0533-x.html
   My bibliography  Save this article

Efficient ANOVA for directional data

Author

Listed:
  • Christophe Ley

    (Université libre de Bruxelles (ULB))

  • Yvik Swan

    (Université de Liège)

  • Thomas Verdebout

    (Université libre de Bruxelles (ULB))

Abstract

In this paper, we tackle the ANOVA problem for directional data. We apply the invariance principle to construct locally and asymptotically most stringent rank-based tests. Our semi-parametric tests improve on the optimal parametric tests by being valid under the whole class of rotationally symmetric distributions. Moreover, they keep the optimality property of the latter under a given m-tuple of rotationally symmetric distributions. Asymptotic relative efficiencies are calculated and the finite-sample behavior of the proposed tests is investigated by means of a Monte Carlo simulation. We conclude by applying our findings to a real-data example involving geological data.

Suggested Citation

  • Christophe Ley & Yvik Swan & Thomas Verdebout, 2017. "Efficient ANOVA for directional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 39-62, February.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0533-x
    DOI: 10.1007/s10463-015-0533-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-015-0533-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-015-0533-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    2. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    3. Tsai, Ming-Tien, 2009. "Asymptotically efficient two-sample rank tests for modal directions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 445-458, March.
    4. repec:eca:wpaper:2013/122336 is not listed on IDEAS
    5. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2011. "Optimal Rank-Based Tests for Common Principal Components," Working Papers ECARES ECARES 2011-032, ULB -- Universite Libre de Bruxelles.
    6. Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemangi V. Kulkarni & Ashis SenGupta, 2022. "An Efficient Test for Homogeneity of Mean Directions on the Hyper‐sphere," International Statistical Review, International Statistical Institute, vol. 90(1), pages 41-61, April.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2016. "Semiparametric error-correction models for cointegration with trends: Pseudo-Gaussian and optimal rank-based tests of the cointegration rank," Journal of Econometrics, Elsevier, vol. 190(1), pages 46-61.
    2. Paindaveine, Davy & Rasoafaraniaina, Rondrotiana Joséa & Verdebout, Thomas, 2017. "Preliminary test estimation for multi-sample principal components," Econometrics and Statistics, Elsevier, vol. 2(C), pages 106-116.
    3. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    4. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Other publications TiSEM bc68a2f2-3ca3-443c-b3ac-f, Tilburg University, School of Economics and Management.
    5. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2017. "Testing for Principal Component Directions under Weak Identifiability," Working Papers ECARES ECARES 2017-37, ULB -- Universite Libre de Bruxelles.
    6. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    7. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Discussion Paper 2015-001, Tilburg University, Center for Economic Research.
    8. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    9. Christophe Ley & Yvik Swan & Thomas Verdebout, 2013. "Efficient ANOVA for Directional Data," Working Papers ECARES ECARES 2012-48, ULB -- Universite Libre de Bruxelles.
    10. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    11. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    12. Toshihiro Abe & Hiroaki Ogata & Takayuki Shiohama & Hiroyuki Taniai, 2017. "Circular autocorrelation of stationary circular Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 275-290, October.
    13. Toshihiro Abe & Christophe Ley, 2015. "A Tractable, Parsimonious and Highly Flexible Model for Cylindrical Data, with Applications," Working Papers ECARES ECARES 2015-20, ULB -- Universite Libre de Bruxelles.
    14. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    15. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    16. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    17. Arnab Kumar Laha & A. C. Pravida Raja & K. C. Mahesh, 2019. "SB-robust estimation of mean direction for some new circular distributions," Statistical Papers, Springer, vol. 60(3), pages 877-902, June.
    18. Jean-Luc Dortet-Bernadet & Nicolas Wicker, 2018. "A Note on Inverse Stereographic Projection of Elliptical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 138-151, February.
    19. Davy Paindaveine & Thomas Verdebout, 2011. "Rank Tests for Elliptical Graphical Modeling," Working Papers ECARES ECARES 2011-039, ULB -- Universite Libre de Bruxelles.
    20. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0533-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.