IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i2p313-333.html
   My bibliography  Save this article

A normal hierarchical model and minimum contrast estimation for random intervals

Author

Listed:
  • Yan Sun
  • Dan Ralescu

Abstract

Many statistical data are imprecise due to factors such as measurement errors, computation errors, and lack of information. In such cases, data are better represented by intervals rather than by single numbers. Existing methods for analyzing interval-valued data include regressions in the metric space of intervals and symbolic data analysis, the latter being proposed in a more general setting. However, there has been a lack of literature on the parametric modeling and distribution-based inferences for interval-valued data. In an attempt to fill this gap, we extend the concept of normality for random sets by Lyashenko and propose a Normal hierarchical model for random intervals. In addition, we develop a minimum contrast estimator (MCE) for the model parameters, which is both consistent and asymptotically normal. Simulation studies support our theoretical findings and show very promising results. Finally, we successfully apply our model and MCE to a real data set. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Yan Sun & Dan Ralescu, 2015. "A normal hierarchical model and minimum contrast estimation for random intervals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 313-333, April.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:313-333
    DOI: 10.1007/s10463-014-0453-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0453-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0453-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    2. Dietrich Stoyan, 1998. "Random Sets: Models and Statistics," International Statistical Review, International Statistical Institute, vol. 66(1), pages 1-27, April.
    3. Lothar Heinrich, 1993. "Asymptotic properties of minimum contrast estimators for parameters of boolean models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 67-94, December.
    4. J. Pfanzagl, 1969. "On the measurability and consistency of minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 14(1), pages 249-272, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    2. Sun, Yan, 2017. "Asymptotic tests for interval-valued means," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 70-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    2. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    3. Guillermo Ayala & María Concepción López-Díaz & Miguel López-Díaz & Lucía Martínez-Costa, 2015. "Methods and Algorithms to Test the Hausdorff and Simplex Dispersion Orders with an R Package," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 661-675, September.
    4. Gil, Maria Angeles & Gonzalez-Rodriguez, Gil & Colubi, Ana & Montenegro, Manuel, 2007. "Testing linear independence in linear models with interval-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3002-3015, March.
    5. Drago, Carlo, 2015. "Exploring the Community Structure of Complex Networks," MPRA Paper 81024, University Library of Munich, Germany.
    6. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    7. Dias, Sónia & Brito, Paula & Amaral, Paula, 2021. "Discriminant analysis of distributional data via fractional programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 206-218.
    8. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    9. J. Le-Rademacher & L. Billard, 2013. "Principal component histograms from interval-valued observations," Computational Statistics, Springer, vol. 28(5), pages 2117-2138, October.
    10. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    11. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    12. Werge, Nicklas & Wintenberger, Olivier, 2022. "AdaVol: An Adaptive Recursive Volatility Prediction Method," Econometrics and Statistics, Elsevier, vol. 23(C), pages 19-35.
    13. Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
    14. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    15. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    16. R. Michel, 1973. "The bound in the Berry-Esseen result for minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(1), pages 148-155, December.
    17. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    18. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    19. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    20. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:313-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.