IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i3p589-615.html
   My bibliography  Save this article

New estimating equation approaches with application in lifetime data analysis

Author

Listed:
  • Keming Yu
  • Bing Wang
  • Valentin Patilea

Abstract

Estimating equation approaches have been widely used in statistics inference. Important examples of estimating equations are the likelihood equations. Since its introduction by Sir R. A. Fisher almost a century ago, maximum likelihood estimation (MLE) is still the most popular estimation method used for fitting probability distribution to data, including fitting lifetime distributions with censored data. However, MLE may produce substantial bias and even fail to obtain valid confidence intervals when data size is not large enough or there is censoring data. In this paper, based on nonlinear combinations of order statistics, we propose new estimation equation approaches for a class of probability distributions, which are particularly effective for skewed distributions with small sample sizes and censored data. The proposed approaches may possess a number of attractive properties such as consistency, sufficiency and uniqueness. Asymptotic normality of these new estimators is derived. The construction of new estimation equations and their numerical performance under different censored schemes are detailed via Weibull distribution and generalized exponential distribution. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Keming Yu & Bing Wang & Valentin Patilea, 2013. "New estimating equation approaches with application in lifetime data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 589-615, June.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:3:p:589-615
    DOI: 10.1007/s10463-012-0385-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0385-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0385-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabakumar Jana & Samadrita Bera, 2024. "Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature," Statistical Papers, Springer, vol. 65(8), pages 5077-5108, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landsman, Zinoviy & Vanduffel, Steven, 2011. "Bounds for some general sums of random variables," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 382-391, March.
    2. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    4. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    5. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    6. Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
    7. Eric Beutner & Henryk Zähle, 2018. "Bootstrapping Average Value at Risk of Single and Collective Risks," Risks, MDPI, vol. 6(3), pages 1-30, September.
    8. Darolles, Serge & Gourieroux, Christian & Jasiak, Joann, 2009. "L-performance with an application to hedge funds," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 671-685, September.
    9. Jones, Bruce L. & Puri, Madan L. & Zitikis, Ricardas, 2006. "Testing hypotheses about the equality of several risk measure values with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 253-270, April.
    10. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    11. Camilla Calì & Maria Longobardi & Claudio Macci & Barbara Pacchiarotti, 2022. "Asymptotic results for linear combinations of spacings generated by i.i.d. exponential random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 733-752, August.
    12. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2012. "Comparison of risks based on the expected proportional shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 292-302.
    13. Bruce L. Jones & Ricardas Zitikis, 2005. "Testing for the order of risk measures: an application of L-statistics in actuarial science," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 193-211.
    14. Sordo, Miguel A., 2008. "Characterizations of classes of risk measures by dispersive orders," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1028-1034, June.
    15. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    16. Ali Genç, 2012. "Distribution of linear functions from ordered bivariate log-normal distribution," Statistical Papers, Springer, vol. 53(4), pages 865-874, November.
    17. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    18. Frangos, Nikolaos & Karlis, Dimitris, 2004. "Modelling losses using an exponential-inverse Gaussian distribution," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 53-67, August.
    19. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    20. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:3:p:589-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.