IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i1p167-189.html
   My bibliography  Save this article

Improved confidence intervals for quantiles

Author

Listed:
  • Yoshihiko Maesono
  • Spiridon Penev

Abstract

We derive the Edgeworth expansion for the studentized version of the kernel quantile estimator. Inverting the expansion allows us to get very accurate confidence intervals for the pth quantile under general conditions. The results are applicable in practice to improve inference for quantiles when sample sizes are moderate. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Yoshihiko Maesono & Spiridon Penev, 2013. "Improved confidence intervals for quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 167-189, February.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:1:p:167-189
    DOI: 10.1007/s10463-012-0369-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0369-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0369-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    2. Xiaojing Xiang, 1995. "A Berry-Esseen theorem for the kernel quantile estimator with application to studying the deficiency of quantile estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 237-251, June.
    3. Yoshihiko Maesono & Spiridon Penev, 2011. "Edgeworth expansion for the kernel quantile estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 617-644, June.
    4. Daniel Janas, 1993. "A smoothed bootstrap estimator for a studentized sample quantile," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 317-329, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beutner, E. & Cramer, E., 2014. "Using linear interpolation to reduce the order of the coverage error of nonparametric prediction intervals based on right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 95-109.
    2. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dipankar Mondal & N. Selvaraju, 2022. "Convexity, two-fund separation and asset ranking in a mean-LPM portfolio selection framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 225-248, March.
    2. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    3. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    4. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    5. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    6. Li, Jie & Huang, Huaxia & Xiao, Xiao, 2012. "The sovereign property of foreign reserve investment in China: A CVaR approach," Economic Modelling, Elsevier, vol. 29(5), pages 1524-1536.
    7. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    8. Niu, Cuizhen & Wong, Wing-Keung & Xu, Qunfang, 2017. "Higher-Order Risk Measure and (Higher-Order) Stochastic Dominance," MPRA Paper 75948, University Library of Munich, Germany.
    9. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    10. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    11. Victor Lebreton, 2007. "Le trading algorithmique," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00332823, HAL.
    12. repec:cte:idrepe:22932 is not listed on IDEAS
    13. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
    14. repec:cte:idrepe:id-13-02 is not listed on IDEAS
    15. Trine Kristoffersen, 2005. "Deviation Measures in Linear Two-Stage Stochastic Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 255-274, November.
    16. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    17. Hoai An Le Thi & Mahdi Moeini, 2014. "Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 199-224, April.
    18. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    19. Al-Khazali, Osamah M. & Koumanakos, Evangelos P. & Pyun, Chong Soo, 2008. "Calendar anomaly in the Greek stock market: Stochastic dominance analysis," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 461-474, June.
    20. Cuizhen Niu & Wing-Keung Wong & Qunfang Xu, 2017. "Kappa ratios and (higher-order) stochastic dominance," Risk Management, Palgrave Macmillan, vol. 19(3), pages 245-253, August.
    21. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    22. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:1:p:167-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.