IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v64y2012i5p1045-1070.html
   My bibliography  Save this article

Testing for a constant coefficient of variation in nonparametric regression by empirical processes

Author

Listed:
  • Holger Dette
  • Mareen Marchlewski
  • Jens Wagener

Abstract

In the common nonparametric regression model, we consider the problem of testing the hypothesis that the coefficient of the scale and location function is constant. The test is based on a comparison of the standardized (by a local linear estimate of the scale function) observations with their mean. We show weak convergence of a centered version of this process to a Gaussian process under the null hypothesis and the alternative and use this result to construct a test for the hypothesis of a constant coefficient of variation in the nonparametric regression model. A small simulation study is also presented to investigate the finite sample properties of the new test. Copyright The Institute of Statistical Mathematics, Tokyo 2012

Suggested Citation

  • Holger Dette & Mareen Marchlewski & Jens Wagener, 2012. "Testing for a constant coefficient of variation in nonparametric regression by empirical processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1045-1070, October.
  • Handle: RePEc:spr:aistmt:v:64:y:2012:i:5:p:1045-1070
    DOI: 10.1007/s10463-011-0346-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-011-0346-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-011-0346-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Dette & A. Munk, 1998. "Testing heteroscedasticity in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 693-708.
    2. Tong, Howell & Yao, Qiwei, 2000. "Nonparametric estimation of ratios of noise to signal in stochastic regression," LSE Research Online Documents on Economics 6324, London School of Economics and Political Science, LSE Library.
    3. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    4. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    5. Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
    6. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    7. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Keilegom, Ingrid, 2013. "Discussion on: "An updated review of Goodness-of-Fit tests for regression models" (by W. Gonzales-Manteiga and R.M. Crujeiras)," LIDAM Discussion Papers ISBA 2013008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Escanciano, Juan Carlos & Pardo-Fernandez, Juan Carlos & Van Keilegom, Ingrid, 2015. "Asymptotic distribution-free tests for semiparametric regressions," LIDAM Discussion Papers ISBA 2015001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
    2. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    3. Dette, Holger & Pilz, Kay F., 2004. "On the estimation of a monotone conditional variance in nonparametric regression," Technical Reports 2004,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    5. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    6. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    7. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    8. Degui Li & Oliver Linton & Zudi Lu, 2010. "Loch Linear Fitting under Near Epoch Dependence: Uniform Consistency with Convergence Rate," STICERD - Econometrics Paper Series 549, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Xu, Ke-Li & Phillips, Peter C. B., 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 518-528.
    10. Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
    11. Pérez-González, A. & Vilar-Fernández, J.M. & González-Manteiga, W., 2010. "Nonparametric variance function estimation with missing data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1123-1142, May.
    12. Piotr Borkowski & Jan Mielniczuk, 2010. "Postmodel selection estimators of variance function for nonlinear autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 50-63, January.
    13. Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
    14. Jana Jurečková & Radim Navrátil, 2014. "Rank tests in heteroscedastic linear model with nuisance parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 433-450, April.
    15. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    16. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    17. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    18. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    19. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    20. Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:64:y:2012:i:5:p:1045-1070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.