IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v57y2005i3p485-505.html
   My bibliography  Save this article

Profile empirical likelihood for parametric and semiparametric models

Author

Listed:
  • Lu Lin
  • Lixing Zhu
  • K. Yuen

Abstract

No abstract is available for this item.

Suggested Citation

  • Lu Lin & Lixing Zhu & K. Yuen, 2005. "Profile empirical likelihood for parametric and semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 485-505, September.
  • Handle: RePEc:spr:aistmt:v:57:y:2005:i:3:p:485-505
    DOI: 10.1007/BF02509236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02509236
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02509236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas A. Severini, 2002. "Modified estimating functions," Biometrika, Biometrika Trust, vol. 89(2), pages 333-343, June.
    2. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdier Valentin, 2018. "Local Semi-Parametric Efficiency of the Poisson Fixed Effects Estimator," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-10, January.
    2. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    3. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    4. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    5. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    6. Ashesh Rambachan & Rahul Singh & Davide Viviano, 2024. "Program Evaluation with Remotely Sensed Outcomes," Papers 2411.10959, arXiv.org.
    7. Charlier, Erwin & Melenberg, Bertrand & van Soest, Arthur, 2000. "Estimation of a censored regression panel data model using conditional moment restrictions efficiently," Journal of Econometrics, Elsevier, vol. 95(1), pages 25-56, March.
    8. Blundell, Richard & Bond, Stephen, 2023. "Reprint of: Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 234(S), pages 38-55.
    9. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    10. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    11. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    12. Bent Jesper Christensen & Michael Sørensen, 2008. "Optimal inference in dynamic models with conditional moment restrictions," CREATES Research Papers 2008-51, Department of Economics and Business Economics, Aarhus University.
    13. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.
    14. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    15. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    16. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    17. Fu, Lianyan & Gao, Wei & Shi, Ning-Zhong, 2011. "Estimation of relative average treatment effects with misclassification," Economics Letters, Elsevier, vol. 111(1), pages 95-98, April.
    18. Jan De Loecker & Paul T. Scott, 2016. "Estimating market power Evidence from the US Brewing Industry," NBER Working Papers 22957, National Bureau of Economic Research, Inc.
    19. Verboven, Frank & Bourreau, Marc & Sun, Yutec, 2018. "Market Entry, Fighting Brands and Tacit Collusion: The Case of the French Mobile Telecommunications Market," CEPR Discussion Papers 12866, C.E.P.R. Discussion Papers.
    20. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:57:y:2005:i:3:p:485-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.