IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v53y2001i1p97-112.html
   My bibliography  Save this article

Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models

Author

Listed:
  • Niclas Bergman
  • Arnaud Doucet
  • Neil Gordon

Abstract

No abstract is available for this item.

Suggested Citation

  • Niclas Bergman & Arnaud Doucet & Neil Gordon, 2001. "Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 97-112, March.
  • Handle: RePEc:spr:aistmt:v:53:y:2001:i:1:p:97-112
    DOI: 10.1023/A:1017920621802
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1017920621802
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1017920621802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carter, C.K. & Kohn, R., "undated". "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    2. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    3. Wong, Chi-ming & Kohn, Robert, 1996. "A Bayesian approach to additive semiparametric regression," Journal of Econometrics, Elsevier, vol. 74(2), pages 209-235, October.
    4. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    5. Charles S. Bos & Ronald J. Mahieu & Herman K. Van Dijk, 2000. "Daily exchange rate behaviour and hedging of currency risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 671-696.
    6. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Tsiaplias, Sarantis, 2008. "Factor estimation using MCMC-based Kalman filter methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 344-353, December.
    8. Masuda, Hiroki & Yoshida, Nakahiro, 2004. "An application of the double Edgeworth expansion to a filtering model with Gaussian limit," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 37-48, October.
    9. Dongchu Sun & Paul Speckman, 2008. "Bayesian hierarchical linear mixed models for additive smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 499-517, September.
    10. MOLTENI, Francesco, PAPPA, Evi, 2017. "The Combination of Monetary and Fiscal Policy Shocks: A TVP-FAVAR Approach," Economics Working Papers MWP 2017/13, European University Institute.
    11. Edoardo Otranto & Giampiero Gallo, 2002. "A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
    12. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    13. Andrieu †Christophe & Doucet‡ Arnaud, 2001. "Optimal Estimation of Amplitude and Phase Modulated Signals," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 1-14, December.
    14. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    15. Geweke, John & Tanizaki, Hisashi, 2001. "Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 151-170, August.
    16. Hisashi Tanizaki, 2001. "Nonlinear and Non-Gaussian State Space Modeling Using Sampling Techniques," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 63-81, March.
    17. Tanizaki, Hisashi, 1997. "Nonlinear and nonnormal filters using Monte Carlo methods," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 417-439, September.
    18. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    19. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 31-49, March.
    20. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:53:y:2001:i:1:p:97-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.