IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v6y2012i4p355-365.html
   My bibliography  Save this article

Analyzing consumers’ shopping behavior using RFID data and pattern mining

Author

Listed:
  • Takanobu Nakahara
  • Katsutoshi Yada

Abstract

The development of sensor networks has enabled detailed tracking of customer behavior in stores. Shopping path data which records each customer’s position and time information is attracting attention as new marketing data. However, there are no proposed marketing models which can identify good customers from huge amounts of time series data on customer movement in the store. This research aims to use shopping path data resulting from tracking customer behavior in the store, using information on the sequence of visiting each product zone in the store and staying time at each product zone, to find how they affect purchasing. To discover useful knowledge for store management, shopping paths data has been transformed into sequence data including information on visit sequence and staying times in the store, and LCMseq has been applied to them to extract frequent sequence patterns. In this paper, we find characteristic in-store behavior patterns of good customers by using actual data of a Japanese supermarket. Copyright Springer-Verlag Berlin Heidelberg 2012

Suggested Citation

  • Takanobu Nakahara & Katsutoshi Yada, 2012. "Analyzing consumers’ shopping behavior using RFID data and pattern mining," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 355-365, December.
  • Handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:355-365
    DOI: 10.1007/s11634-012-0117-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-012-0117-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-012-0117-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prinzie, Anita & Van den Poel, Dirk, 2006. "Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models," European Journal of Operational Research, Elsevier, vol. 170(3), pages 710-734, May.
    2. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012. "Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
    2. Licheng Zhao & Yi Zuo & Katsutoshi Yada, 2023. "Sequential classification of customer behavior based on sequence-to-sequence learning with gated-attention neural networks," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 549-581, September.
    3. Kamila Migdał-Najman & Krzysztof Najman & Sylwia Badowska, 2020. "The GNG neural network in analyzing consumer behaviour patterns: empirical research on a purchasing behaviour processes realized by the elderly consumers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 947-982, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Thorleuchter & D. Van Den Poel, 2013. "Weak Signal Identification with Semantic Web Mining," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/860, Ghent University, Faculty of Economics and Business Administration.
    2. Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012. "Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
    3. D. Thorleuchter & D. Van Den Poel, 2012. "Protecting Research and Technology from Espionage," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/824, Ghent University, Faculty of Economics and Business Administration.
    4. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    5. J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
    6. Creed, Bernard & Ning Shen, Kathy & Ashill, Nick & Wu, Tianshi, 2021. "Retail shopping at airports: Making travellers buy again," Journal of Business Research, Elsevier, vol. 137(C), pages 293-307.
    7. J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.
    8. Samy Mansouri, 2021. "Business cycles influences upon customer cross-buying behavior in the case of financial services," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 26(3), pages 181-201, September.
    9. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    10. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
    11. A. Prinzie & D. Van Den Poel, 2005. "Incorporating sequential information into traditional classification models by using an element/position- sensitive SAM," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/292, Ghent University, Faculty of Economics and Business Administration.
    12. Nadarajah, Saralees & Kotz, Samuel, 2009. "Models for purchase frequency," European Journal of Operational Research, Elsevier, vol. 192(3), pages 1014-1026, February.
    13. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    14. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    15. Talla Nobibon, Fabrice & Leus, Roel & Spieksma, Frits C.R., 2011. "Optimization models for targeted offers in direct marketing: Exact and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 210(3), pages 670-683, May.
    16. Abbas Keramati & Hajar Ghaneei & Seyed Mohammad Mirmohammadi, 2016. "Developing a prediction model for customer churn from electronic banking services using data mining," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-13, December.
    17. Oppewal, Harmen & Paas, Leonard J. & Crouch, Geoffrey I. & Huybers, Twan, 2010. "Segmenting consumers based on how they spend a tax rebate: An analysis of the Australian stimulus payment," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 510-519, August.
    18. A. Prinzie & D. Van Den Poel, 2007. "Predicting home-appliance acquisition sequences: Markov/Markov for Discrimination and survival analysis for modeling sequential information in NPTB models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/442, Ghent University, Faculty of Economics and Business Administration.
    19. Leonard Paas & Tammo Bijmolt & Jeroen Vermunt, 2015. "Long-term developments of respondent financial product portfolios in the EU: a multilevel latent class analysis," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 249-262, August.
    20. Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:355-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.