IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v5y2011i3p201-213.html
   My bibliography  Save this article

Linear dimension reduction in classification: adaptive procedure for optimum results

Author

Listed:
  • Karsten Luebke
  • Claus Weihs

Abstract

No abstract is available for this item.

Suggested Citation

  • Karsten Luebke & Claus Weihs, 2011. "Linear dimension reduction in classification: adaptive procedure for optimum results," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 201-213, October.
  • Handle: RePEc:spr:advdac:v:5:y:2011:i:3:p:201-213
    DOI: 10.1007/s11634-011-0091-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-011-0091-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-011-0091-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weihs, Claus & Luebke, Karsten, 2005. "Improving Feature Extraction by Replacing the Fisher Criterion by an Upper Error Bound," Technical Reports 2005,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Michael C. Röhl & Claus Weihs & Winfried Theis, 2002. "Direct Minimization of Error Rates in Multivariate Classification," Computational Statistics, Springer, vol. 17(1), pages 29-46, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luebke, Karsten & Weihs, Claus, 2004. "Generation of prediction optimal projection on latent factors by a stochastic search algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 297-310, September.
    2. Enache, Daniel & Weihs, Claus, 2004. "Importance Assessment of Correlated Predictors in Business Cycles Classification," Technical Reports 2004,66, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:5:y:2011:i:3:p:201-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.