IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v47y2004i2p297-310.html
   My bibliography  Save this article

Generation of prediction optimal projection on latent factors by a stochastic search algorithm

Author

Listed:
  • Luebke, Karsten
  • Weihs, Claus

Abstract

No abstract is available for this item.

Suggested Citation

  • Luebke, Karsten & Weihs, Claus, 2004. "Generation of prediction optimal projection on latent factors by a stochastic search algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 297-310, September.
  • Handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:297-310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00276-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Röhl & Claus Weihs & Winfried Theis, 2002. "Direct Minimization of Error Rates in Multivariate Classification," Computational Statistics, Springer, vol. 17(1), pages 29-46, March.
    2. Weihs, Claus & Hothorn, Torsten, 2002. "Determination of optimal prediction oriented multivariate latent factor models using loss functions," Technical Reports 2002,15, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    4. Groß, Jürgen & Lübke, Karsten & Weihs, Claus, 2002. "A note on the general solution for a projection matrix in latent factor models," Technical Reports 2002,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihs, Claus & Luebke, Karsten, 2004. "A Note on the Dimension of the Projection Space in a Latent Factor Regression Model with Application to Business Cycle Classification," Technical Reports 2004,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Luebke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "Latent Factor Prediction Pursuit for Rank Deficient Regressors," Technical Reports 2004,75, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    6. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2022. "Assessing the Economic Impact of Lockdowns in Italy: A Computational Input–Output Approach [Nonlinear Production Networks with an Application to the Covid-19 Crisis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 358-409.
    7. LeBaron Blake & Winker Peter, 2008. "Introduction to the Special Issue on Agent-Based Models for Economic Policy Advice," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 141-148, April.
    8. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    9. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    10. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    11. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    12. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    13. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2013. "Animal Spirits, Heterogeneous Expectations and the Emergence of Booms and Busts," Tinbergen Institute Discussion Papers 13-205/II, Tinbergen Institute.
    14. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    15. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    16. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    17. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    18. Sylvain Barde & Sander van der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Studies in Economics 1712, School of Economics, University of Kent.
    19. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    20. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    21. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:297-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.