Zmiennosc cen na globalnym rynku surowcow a ryzyko banku
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pierre Giot & Sébastien Laurent, 2003.
"Value-at-risk for long and short trading positions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
- GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," LIDAM Discussion Papers CORE 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Value-at-Risk for long and short trading positions," LIDAM Reprints CORE 1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
- Stijn Van Nieuwerburgh & Hanno Lustig & Bryan Kelly & Bernard Herskovic, 2014. "The Common Factor in Idiosyncratic Volatility," 2014 Meeting Papers 810, Society for Economic Dynamics.
- Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012.
"Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models,"
Energy Economics, Elsevier, vol. 34(1), pages 283-293.
- Mohamed El Hedi Arouri & Amine Lahiani & Khuong Nguyen Duc, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers 13, Development and Policies Research Center (DEPOCEN), Vietnam.
- Mohamed AROURI & Amine LAHIANI & D.-K. NGUYEN, 2010. "Forecasting the Conditional Volatility of Oil Spot andFutures Prices with Structural Breaksand Long Memory Models," LEO Working Papers / DR LEO 661, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Mohamed El Hedi Arouri & Duc Khuong Nguyen & Amine Lahiani, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers hal-00507831, HAL.
- Aldo Levy & M.H. Arouri & Amine Lahiani & Duc Khuong Nguyen, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Post-Print halshs-01279906, HAL.
- Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012.
"Long memory and structural breaks in modeling the return and volatility dynamics of precious metals,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
- Mohamed El Hedi Arouri & Shawkat Hammoudeh & Amine Lahiani & Duc Khuong Nguyen, 2013. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," Working Papers hal-00798033, HAL.
- Kang, Sang Hoon & Yoon, Seong-Min, 2013.
"Modeling and forecasting the volatility of petroleum futures prices,"
Energy Economics, Elsevier, vol. 36(C), pages 354-362.
- Seong-Min Yoon & Sang Hoon Kang, 2012. "Modelling and forecasting the volatility of petroleum futures prices," EcoMod2012 3944, EcoMod.
- Rossignolo, Adrián F. & Fethi, Meryem Duygun & Shaban, Mohamed, 2013. "Market crises and Basel capital requirements: Could Basel III have been different? Evidence from Portugal, Ireland, Greece and Spain (PIGS)," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1323-1339.
- Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016.
"The common factor in idiosyncratic volatility: Quantitative asset pricing implications,"
Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
- Bernard Herskovic & Bryan T. Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2014. "The Common Factor in Idiosyncratic Volatility: Quantitative Asset Pricing Implications," NBER Working Papers 20076, National Bureau of Economic Research, Inc.
- James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
- J. Carlos Escanciano & Jose Olmo, 2011. "Robust Backtesting Tests for Value-at-risk Models," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 132-161, Winter.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014.
"Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory,"
Energy Economics, Elsevier, vol. 41(C), pages 1-18.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-325, Department of Research, Ipag Business School.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-389, Department of Research, Ipag Business School.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
- Sylvain Benoit & Christophe Hurlin & Christophe Perignon, 2015.
"Implied Risk Exposures,"
Review of Finance, European Finance Association, vol. 19(6), pages 2183-2222.
- Sylvain Benoît & Christophe Hurlin & Christophe Pérignon, 2014. "Implied Risk Exposures," Working Papers halshs-00836280, HAL.
- Sylvain Benoît & Christophe Hurlin & Christophe Pérignon, 2015. "Implied Risk Exposures," Post-Print hal-01485613, HAL.
- Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
- Delavari, Majid & Gandali Alikhani, Nadiya, 2012. "The Effect of Crude Oil Price on the Methanol price," MPRA Paper 49727, University Library of Munich, Germany.
- repec:ipg:wpaper:2014-053 is not listed on IDEAS
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- repec:ipg:wpaper:2014-503 is not listed on IDEAS
- repec:ipg:wpaper:2013-009 is not listed on IDEAS
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
- Delavari, Majid & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2013. "Does long memory matter in forecasting oil price volatility?," MPRA Paper 46356, University Library of Munich, Germany.
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
- repec:ipg:wpaper:9 is not listed on IDEAS
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019.
"Futures-based forecasts: How useful are they for oil price volatility forecasting?,"
Energy Economics, Elsevier, vol. 81(C), pages 639-649.
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," MPRA Paper 96446, University Library of Munich, Germany.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- repec:ipg:wpaper:201409 is not listed on IDEAS
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
- Akbar Komijani & Esmaeil Naderi & Nadiya Gandali Alikhani, 2014.
"A hybrid approach for forecasting of oil prices volatility,"
OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 323-340, September.
- Komijani, Akbar & Naderi, Esmaeil & Gandali Alikhani, Nadiya, 2013. "A Hybrid Approach for Forecasting of Oil Prices Volatility," MPRA Paper 44654, University Library of Munich, Germany.
More about this item
Keywords
credit risk; market risk; raw materials; petroleum; GARCH; VaR institutions; deposit guarantee schemes;All these keywords.
JEL classification:
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgm:pzwzuw:v:15:i:66:y:2017:p:107-124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/somuwpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.