IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i51y2018p187-206.html
   My bibliography  Save this article

Analysis of the IBNR reserve credibility predictors

Author

Listed:
  • Karina Ostoj

    (Deloitte, Dział Usług Aktuarialnych; Szkoła Główna Handlowa w Warszawie)

Abstract

Chain ladder is one of the simplest and the most frequently used method for the estimation of the IBNR (Incurred but not Reported) reserve. Due to its popularity and wide recognition, it abided many modifications, including its generalization within the credibility theory presented in Gisler and Wütrich (2008). The idea relies on a distinction between so-called individual information and collective information relating to various parts of a single insurance portfolio, where the share of both sources of information constitutes a subject to estimation. The simulation analysis presented in this paper enabled the comparison of the prediction quality based on the classical chain ladder and of its Bayesian counterpart.

Suggested Citation

  • Karina Ostoj, 2018. "Analysis of the IBNR reserve credibility predictors," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 187-206.
  • Handle: RePEc:sgh:annals:i:51:y:2018:p:187-206
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z51_09.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    2. Gisler, Alois & Wüthrich, Mario V., 2008. "Credibility for the Chain Ladder Reserving Method," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 565-600, November.
    3. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    2. Peters, Gareth W. & Targino, Rodrigo S. & Wüthrich, Mario V., 2017. "Full Bayesian analysis of claims reserving uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 41-53.
    3. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    4. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    5. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    6. COSTA, JUAN IGNACIO BACCINO & DE ARMAS, GONZALO & Álvarez-Vaz, Ramón Dr., 2022. "Estudio De Algunos Métodos De Reservas Técnicas En Condiciones De Incertidumbre Para Seguros De No Vida (Study Of Some Methods Of Technical Reserves Under Conditions Of Uncertainty For Non-Life Insura," OSF Preprints 3pjr9, Center for Open Science.
    7. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    8. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    9. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    10. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    11. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    12. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    13. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    14. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    15. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    16. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    17. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    18. Yves L. Grize, 2015. "Applications of Statistics in the Field of General Insurance: An Overview," International Statistical Review, International Statistical Institute, vol. 83(1), pages 135-159, April.
    19. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    20. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:51:y:2018:p:187-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.