IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i31y2013p157-183.html
   My bibliography  Save this article

Model stochastycznej zależności liczby szkód i wartości pojedynczej szkody

Author

Listed:
  • Joanna Sawicka

    (Uniwersytet Warszawski)

Abstract

W literaturze dotyczącej metody zaufania (ang. credibility method) oraz wyceny składki na podstawie historii szkodowej ubezpieczonego (ang. experience rating) rozpatruje się zazwyczaj modele stochastycznej niezależności liczby szkód i wartości pojedynczej szkody. W niniejszym artykule rozważony zostanie natomiast model stochastycznej zależności liczby szkód i wartości pojedynczej szkody w populacji ubezpieczonych jednorodnych pod względem charakterystyk obserwowalnych. W artykule obliczona zostanie składka zaufania dla łącznej wartości szkód na podstawie liczby szkód, a także zaproponowana zostanie regresja pomocnicza pozwalająca na przetestowanie w prosty sposób, czy parametry ryzyka rozkładów liczby szkód i wartości pojedynczej szkody są stochastycznie zależne. Rozpatrzone zostaną ponadto przykładowe modele stochastycznej zależności liczby szkód i wartości pojedynczej szkody, a także uzyskane zostaną dla nich wielkości składek zaufania i teoretyczne wartości parametrów w regresji pomocniczej.

Suggested Citation

  • Joanna Sawicka, 2013. "Model stochastycznej zależności liczby szkód i wartości pojedynczej szkody," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 157-183.
  • Handle: RePEc:sgh:annals:i:31:y:2013:p:157-183
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z31_09.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Englund, Martin & Guillén, Montserrat & Gustafsson, Jim & Nielsen, Lars Hougaard & Nielsen, Jens Perch, 2008. "Multivariate Latent Risk: A Credibility Approach," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 137-146, May.
    2. Edward Frees, 2003. "Multivariate Credibility for Aggregate Loss Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(1), pages 13-37.
    3. Pinquet, Jean, 1997. "Allowance for Cost of Claims in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 33-57, May.
    4. Vincent Goulet & Antoni Forgues & Jiatao Lu, 2006. "Credibility for Severity Revisited," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 49-62.
    5. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    2. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    3. Angers, Jean-François & Desjardins, Denise & Dionne, Georges, 2004. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 253-303, Juin-Sept.
    4. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    5. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    6. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    7. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    8. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    9. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    10. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    11. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2018. "Multivariate Credibility in Bonus-Malus Systems Distinguishing between Different Types of Claims," Risks, MDPI, vol. 6(2), pages 1-11, April.
    12. Asamoah, Kwadwo, 2016. "On the credibility of insurance claim frequency: Generalized count models and parametric estimators," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 339-353.
    13. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    14. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    15. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    16. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    17. Levon Barseghyan & Francesca Molinari & Darcy Steeg Morris & Joshua C. Teitelbaum, 2020. "The Cost of Legal Restrictions on Experience Rating," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(1), pages 38-70, March.
    18. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    19. Søren Asmussen, 2014. "Modeling and Performance of Bonus-Malus Systems: Stationarity versus Age-Correction," Risks, MDPI, vol. 2(1), pages 1-25, March.
    20. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:31:y:2013:p:157-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.