IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v9y20189i1p5-32.html
   My bibliography  Save this article

Valuación de opciones financieras con arbitraje por medio de la ecuación de Black Scholes mediante un esquema de diferencias finitas / Financial Option Valuation with Arbitrage by means of the Black Scholes Equation using a Finite Differences Scheme

Author

Listed:
  • Sierra Juárez, Guillermo

    (Centro Universitario de Ciencias Económico Administrativas, Departamento de Métodos Cuantitativos, Universidad de Guadalajara)

  • Gualajara Estrada, Víctor Hugo

    (Centro Universitario de Ciencias Económico Administrativas, Departamento de Métodos Cuantitativos, Universidad de Guadalajara)

  • Casillas Gonzále, Juan Martín

    (Departamento de Matemáticas, Universidad de Guadalajara)

Abstract

La solución a la ecuación de Black-Scholes, con las condiciones de frontera adecuadas, es una técnica conocida por su utilidad para obtener el valor de la prima de las opciones financieras, y existen diversos métodos para resolverla. Por otra parte, es frecuente encontrar diferencias entre los valores teóricos y los operados en los mercados de opciones financieras, estas diferencias son abordadas por varias teorías. En este trabajo, con el objetivo de explicar la mencionada diferencia de valores, se plantea un modelo de Black-Scholes el cual incluye, desde el principio, la posibilidad de arbitraje, y se propone un esquema para resolverlo con base al método explícito de diferencias finitas. Además, el resultado obtenido se compara con la solución sin arbitraje. El arbitraje se plantea como un impulso que varía mediante un parámetro compara con la solución sin arbitraje. El arbitraje se plantea como un un parámetro λ. Se propone su solución y se analizan los resultados tomando diferentes valores del impulso, de la volatlidad y del plazo del vencimiento. Una contribución adicionales que se ofrece el algoritmo computacional para la solución del modelo planteado / The solution to the Black-Scholes equation, considering the right boundary conditions, is a technique widely used to obtain the prime value of financial options, and several methods have been proposed to solve it. On the other hand, a difference between the theoretical values and financial options market values is often found. This difference has been considered by several theories. In this paper, aiming to explain the mentioned value differences, a Black-Scholes model is proposed, which includes from the start, the possiblility of arbitrage and a scheme to solve it, based on the explicit Method of Finite Differences. The results obtained are compared with the solution without arbitrage. Arbitrage is modeled as an impulse that varies by a parameter λ. A solution is proposed and the results are analyzed considering different values of the momentum, the volatility and the term to maturity. An additional contribution is that a computational algorithm for the solution of the proposed model is offered

Suggested Citation

  • Sierra Juárez, Guillermo & Gualajara Estrada, Víctor Hugo & Casillas Gonzále, Juan Martín, 2019. "Valuación de opciones financieras con arbitraje por medio de la ecuación de Black Scholes mediante un esquema de diferencias finitas / Financial Option Valuation with Arbitrage by means of the Black S," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 9(1), pages 5-32, enero-jun.
  • Handle: RePEc:sfr:efruam:v:9:y:20189:i:1:p:5-32
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/110/88
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    derivados financieros; modelo de Black Scholes; método de diferencia finitas / Financial Derivatives; Black Scholes Model; Finite Differences Method.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:9:y:20189:i:1:p:5-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.