IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v4y2014i2p191-208.html
   My bibliography  Save this article

Aplicación de análisis multifractal de exponentes de Hölder en mercados financieros mexicanos : índice accionario IPC y tipo de cambio USD/MXN / A Multifractal Analysis Application of Hölder Exponents in Mexican Financial Markets: Mexican Stock Index and Foreign Exchange USD/MXN

Author

Listed:
  • Rendón De la Torre, Stephanie

    (Universidad Nacional Autónoma de México, Facultad de Contaduría y Administración.)

Abstract

El modelo multifractal ha demostrado que es posible modelar sistemas económicos al describir una serie de tiempo financiera a través de su espectro multifractal. Este tipo de análisis ofrece la posibilidad de estudiar (entre otras características) la regularidad local de las series de tiempo (la cual es útil en la detección a priori y a posteriori de las caídas fuertes en los mercados). La propuesta de este trabajo es demostrar que a través de la evolución de los exponentes de Hölder y la detección de sus puntos irregulares, es posible estudiar la dinámica de los mercados financieros. Para evaluar y probar lo anterior, se determinaron los exponentes locales y puntuales de las series de tiempo históricas del índice IPC de México, y del tipo de cambio dólar americano/peso mexicano durante los años de 1992-2013 (utilizando precios de cierres oficiales diarios) y finalmente, se propone la posibilidad de anticipar y de detectar movimientos críticos en estas series de tiempo mediante la metodología definida. El presente documento se divide de la siguiente manera: al inicio se incluye una introducción, en la primera parte se elabora una revisión de la literatura, en la segunda sección se analiza detalladamente la metodología aplicada, en la tercera parte se muestran y analizan los resultados obtenidos y finalmente, la última parte resume las conclusiones / The Multifractal Model has proven that it is possible to model economic systems by describing a financial time series through its multifractal spectrum. This type of model offers the possibility of study time series local regularity (among other characteristics) which allows to detect large market falls a priori and a posteriori. This paper aims to show that it is feasible to study financial markets dynamics through the evolution of Hölder Exponents and the detection of their irregularities. In order to assess and test the above mentioned, local and punctual exponents from the Mexican Stock Market (IPC) and Foreign Exchange financial series (considering official daily closing prices), from 1992 to 2013, were determined. Eventually, the possibility to anticipate and detect critical movements in the financial series studied, through the methodology stated, is proposed. This paper is divided as follows: an introduction is presented, then section one includes a literature review, in section two the methodology used is described in detail, in the third section the results obtained are shown and analyzed, and in the last part conclusions are drawn

Suggested Citation

  • Rendón De la Torre, Stephanie, 2014. "Aplicación de análisis multifractal de exponentes de Hölder en mercados financieros mexicanos : índice accionario IPC y tipo de cambio USD/MXN / A Multifractal Analysis Application of Hölder Exponents," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 4(2), pages 191-208, julio-dic.
  • Handle: RePEc:sfr:efruam:v:4:y:2014:i:2:p:191-208
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/65/61
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Exponentes de Hölder; Análisis Multifractal; Series de tiempo financieras / Hölder Exponents; Multifractal Analysis; Financial Time Series;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:4:y:2014:i:2:p:191-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.