IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v4y2014i1p33-62.html
   My bibliography  Save this article

Empresas exitosas y no exitosas que cotizan en la BMV del Sector Comercial: Una clasificación con Análisis Discriminante Múltiple, Modelos Logit y Redes Neuronales Artificiales

Author

Listed:
  • Oswaldo García Salgado

    (Universidad Autónoma del Estado de México)

  • Arturo Morales Castro

    (Universidad Nacional Autónoma de México)

Abstract

El presente estudio tiene el propósito de identificar las razones financieras que son determinantes para lograr el éxito financiero de las empresas que cotizan en la Bolsa Mexicana de Valores (BMV), en específico del sector comercial utilizando las técnicas de Análisis Discriminante Múltiple (ADM), el modelo Logit; y las Redes Neuronales Artificiales (RNA). Para ello se consideraron 24 empresas que pertenecían a este sector, tomando en cuenta para cada empresa 37 razones financieras - de liquidez, apalancamiento, solvencia, actividad, y rentabilidad - para el periodo comprendido entre 1995 y 2005. Se consideró como criterios de éxito financiero a aquellas empresas que crean valor teniendo crecimiento consecutivo por tres años en las utilidades netas, el precio del mercado y la Generación Económica Operativa. Los hallazgos mostraron que los modelos paramétricos ADM y Logit, están limitados debido a sus supuestos estadísticos, en específico en la normalidad exigida en las variables exógenas, a diferencia de las RNA que no están sometidas a condiciones paramétricas, demostrando que aunque todas las razones financieras tienen una participación en la obtención del éxito financiero, existen algunas que influyen más que otras, y que al hacer uso de las RNA es posible considerar el total de las razones financieras, sin descartar ninguna. / The aim of this study is to identify the financial ratios that are crucial for the financial success of the companies listed on the Mexican Stock Exchange (MSE) specifically from the commercial sector using Multiple Discriminant Analysis (MDA), Logit model, and Artificial Neural Networks (ANN) techniques. 24 companies belonging to this sector were considered, taking into account 37 financial ratios - liquidity, leverage, solvency, activity, and profitability - for each company in the period between 1995 and 2005. It was considered as a criteria of financial success the companies that create value and consecutive growth in three years in net incomes, the market price and Operative Economic Generation. The findings showed that the parametric models MDA and Logit, are limited because of their statistical assumptions, specifically in normality required in the exogenous variables, unlike the ANN which are not subjected to parametric conditions. The results show that although all financial ratios have an interest in obtaining financial success, there are some that have more influence than others, and that in using ANN is possible to consider the total financial ratios, without discarding any.

Suggested Citation

  • Oswaldo García Salgado & Arturo Morales Castro, 2014. "Empresas exitosas y no exitosas que cotizan en la BMV del Sector Comercial: Una clasificación con Análisis Discriminante Múltiple, Modelos Logit y Redes Neuronales Artificiales," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 4(1), pages 33-62, enero-jun.
  • Handle: RePEc:sfr:efruam:v:4:y:2014:i:1:p:33-62
    as

    Download full text from publisher

    File URL: http://zaloamati.azc.uam.mx/bitstream/handle/11191/4187/EFR_4_1_2_Empresas_exitosas_no_exitosas.pdf?sequence=1&isAllowed=y
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Razones financieras; desempeño financiero; redes neuronales artificiales; financial ratios; financial performance; artificial neural networks.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G1 - Financial Economics - - General Financial Markets
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:4:y:2014:i:1:p:33-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.