IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v1y2011i1p29-53.html
   My bibliography  Save this article

Integración fraccionaria y valor en riesgo / Fractional Integration and Value at Risk

Author

Listed:
  • López Herrera, Francisco

    (Universidad Nacional Autónoma de México, Facultad de Contaduría y Administracion)

  • Ortiz Calisto, Edgar

    (Universidad Nacional Autónoma de México, Facultad de Ciencias Políticas y Sociales)

  • Gutiérrez, Raúl De Jesús

    (Universidad Autónoma del Estado de México, Facultad de Economía)

Abstract

Investigaciones recientes sobre la volatilidad de los mercados de valores resaltan los problemas asociados con la correlación de precios dependiente en el tiempo, así como sus implicaciones en el comportamiento estocástico de los rendimientos. Numerosos enfoques y modelos empíricos han sido aplicados para examinar dicho comportamiento, pero concentrándose en el caso de los países desarrollados. Pocos estudios se han avocado a analizar la presencia de memoria larga en los mercados emergentes. Este trabajo intenta superar esas limitaciones mediante el examen de la memoria larga de los rendimientos diarios del índice de la Bolsa Mexicana de Valores (bmv) para el periodo enero de 1983 a diciembre de 2009. Se aplican modelos de la familia ARCH para analizar la volatilidad del mercado y para modelar los rendimientos se especifica un modelo arfima (autoregressive fractionally integrated moving average). Se realizan varias estimaciones suponiendo diferentes distribuciones para los errores (distribución normal, t de Student y t de Student asimétrica). Posteriormente, las volatilidades estimadas se utilizan para calcular el Valor en Riesgo (VaR) para las posiciones larga y corta. La evidencia empírica confirma la presencia de memoria larga manifiesta en la significancia del parámetro de integracción fraccionaria para los rendimientos observados. Este resultado sugiere la posibilidad de predecir los precios futuros y obtener ganancias extraordinarias, contrario a lo que afirma la teoría de los mercados eficientes. Finalmente, es de destacar que el análisis efectuado sugiere que los modelos de volatilidad asimétrica podrían medir mejor el riesgo de mercado, especialmente cuando se considera que el proceso de los errores sigue una distribución t de Student sesgada / Recent studies on the volatility of stock markets stress problems associated with time varying correlations of prices and their implications to the stochastic behavior of returns. Numerous empirical approaches and models have been applied to examine thatbehavior, but emphasizing the case of the developed countries. Few studies have been devoted to identify the presence of long memory in emerging markets. This work is aimed to overcome such limitation through the examination of the long memory behavior of daily returns of the Mexican Stock Market Index for the period January 1983 to December 2009. ARCH family models are used to analyze the volatility of the market and an arfima (autoregressive fractionally integrated moving average) model is specified to model the returns. Estimations are made assuming different distributions for the errors (normal, Student t, and asymmetric Student t distributions). Then, the estimated volatilities are used to compute the Value at Risk (VaR) for both long and short positions. The empirical evidence confirms the presence of long memory manifested in the significant level of the fractional differencing parameter for the observed returns. This finding suggests the possibility of predicting future prices and obtaining abnormal profits, contrary to the assertions from the efficient markets theory. The analysis also suggests that the asymmetric volatility models could be better fitted to measure market risk, especially when a Student t skewed distribution is assumed for the error process

Suggested Citation

  • López Herrera, Francisco & Ortiz Calisto, Edgar & Gutiérrez, Raúl De Jesús, 2011. "Integración fraccionaria y valor en riesgo / Fractional Integration and Value at Risk," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 1(1), pages 29-53, enero-jun.
  • Handle: RePEc:sfr:efruam:v:1:y:2011:i:1:p:29-53
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/46/43
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Valor en Riesgo; Riesgo de mercado; Memoria larga; Modelos arfima; Modelos garch / Value at Risk; Market Risk; Long memory; ArfimaModels; Garch Models;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:1:y:2011:i:1:p:29-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.