IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v11y2021i2p117-146.html
   My bibliography  Save this article

Estimaciones de riesgo ajustadas por distribución: una aplicación para portafolios de inversión integrados por activos nacionales / Distribution-Adjusted Risk Estimates: An Application to Domestic Assets Investment Portfolios

Author

Listed:
  • Reyes Zárate, Francisco J

    (Departamento de Administración de la Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Cd. de México, México)

  • León López, Iván

    (Departamento de Sistemas, Programa de Maestría y Doctorado en Ingeniería de la Universidad Nacional Autónoma de México, Cd. de México, México)

Abstract

Pese a todos los efectos económicos que el virus SARS-CoV-2 (COVID-19) ha dejado en las economías del mundo, los mercados financieros han funcionado bajo condiciones de adaptación mediática que permiten a los inversionistas seguir evaluando oportunidades para diversificar y optimizar sus carteras. El presente trabajo se concentra en el ajuste de distribución sobre los parámetros de la varianza de series financieras que conforman un portafolio de inversión mostrando estimadores consistentes y eficientes sobre el comportamiento y pronóstico de la volatilidad utilizando modelos paramétricos GARCH (Generalized Autoregressive Heteroskedasticity), y no paramétricos como la volatilidad histórica y el modelo EWMA (Exponentially Weighted Moving Average). Los resultados obtenidos muestran que los métodos no paramétricos sobreestiman los niveles de volatilidad en comparación con los modelos de volatilidad condicional al verificar el análisis retrospectivo basado en los enfoques de Valor en Riesgo (VaR) y su versión condicional (CVaR) durante el periodo prepandemia y postpandemia. / Despite the effects of the SARS-CoV-2 (COVID 19) virus on the world economy, the financial markets have functioned under mediatic adaptation conditions which allow investors to keep evaluating opportunities for diversifying and optimizing portfolios. This paper focuses on the distribution adjustment of the variance parameters of the financial series that make up an investment portfolio showing consistent and efficient estimators of the volatility behaviour and forecast by means of GARCH parametric models (Generalized Autoregressive Heteroskedasticity), and non-parametric ones such as historic volatility and the EWMA (Exponentially Weighted Moving Average) model The results obtained show that the non-parametric methods overestimate the volatility levels compared with the conditional volatility models when verifying the retrospective analysis based on the Value at Risk (VaR) approach and its conditional version (CVaR) during the pre and post pandemic periods.

Suggested Citation

  • Reyes Zárate, Francisco J & León López, Iván, 2021. "Estimaciones de riesgo ajustadas por distribución: una aplicación para portafolios de inversión integrados por activos nacionales / Distribution-Adjusted Risk Estimates: An Application to Domestic Ass," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 11(2), pages 117-146, julio-dic.
  • Handle: RePEc:sfr:efruam:v:11:y:2021:i:2:p:117-146
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/152/225
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ajuste distribucional; volatilidad; portafolios de inversión; VaR; CVaR Condicional; EWMA; GARCH / distribution adjustment; volatility; investment portfolio; VaR; conditional VaR; EWMA; GARCH;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:11:y:2021:i:2:p:117-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.