Author
Listed:
- Martínez Escobar, Juan Andrés
(Maestría en Ciencias de la Computación, Universidad Autónoma Metropolitana-Unidad Azcapotzalco)
- González Brambila, Silvia Beatriz
(Departamento de sistemas, Universidad Autónoma Metropolitana-Unidad Azcapotzalco)
- Mora Gutiérrez, Román Anselmo
(Departamento de sistemas, Universidad Autónoma Metropolitana-Unidad Azcapotzalco)
- Caudillo Félix, Rubén
(Investigador independiente)
Abstract
En este trabajo, se presenta una nueva metodología para analizar y predecir el comportamiento de acciones de la Bolsa Mexicana de Valores basada en la concatenación sinérgica de estrategias estadísticas no paramétricas y modelos multiobjetivos de optimización. Esta metodología involucra dos fases, la primera, de filtrado, constituye un proceso automatizado para el análisis, evaluación y selección de la información necesaria y pertinente, para la caracterización del comportamiento de cada acción; posteriormente, la segunda fase de ajuste del modelo, involucra adaptar y resolver un modelo multiobjetivo para la predicción de precios de las acciones seleccionadas. La base de datos empleada considera el comportamiento de doce acciones representativas en la Bolsa Mexicana de Valores en el periodo 2006 al 2016, el código fuente utilizado se encuentra disponible en “http://bit.ly/396h3J1”; los datos fueron obtenidos de una plataforma especializada sobre mercados financieros en Latinoamérica (Economatica, n.d). Los resultados numéricos obtenidos muestran que la fase de filtrado es capaz de identificar un conjunto compacto de variables relevantes con alta influencia en el precio futuro de cada acción en particular. En la segunda fase, se emplearon los datos del 2016 como valores a predecir sobre el modelo multiobjetivo y, comparado con el modelo de regresión lineal múltiple, se observa una mejora considerable en la calidad de los datos pronosticados, haciendo que el modelo generado a partir de la segunda fase tenga una confiabilidad mayor al 95%. / In this paper, a new methodology is presented to analyze and predict the behavior of stocks in the Mexican Stock Market based on the synergistic concatenation of non-parametric statistical strategies and multi-objective optimization models. This methodology involves two phases. The first (filtering) leverages an automated process for the analysis, evaluation, and selection of the necessary and relevant information for the characterization of the behavior of each action. The second (the model adjustment phase) involves adapting and solving a multi-objective model for the prediction of prices of the selected stocks. The database used for this research includes the behavior of twelve significant stocks in the Mexican stock exchange during the 2006 to 2016 period, the source code used is available at “http://bit.ly/396h3J1”; the data was obtained from a specialized financial markets platform for Latin America. The numerical results show that the filtering phase can identify a compact set of relevant variables with a significant influence on the future price of each stock. In the second phase, the data from 2016 is used to predict the multi-objective model, which compared with the multiple linear regression model, provides a considerable improvement in the quality of the predicted observed data. The model generated from the second phase has a reliability greater than 95%.
Suggested Citation
Martínez Escobar, Juan Andrés & González Brambila, Silvia Beatriz & Mora Gutiérrez, Román Anselmo & Caudillo Félix, Rubén, 2020.
"Desarrollo de una metodología para el análisis y el pronóstico de acciones de la Bolsa Mexicana de Valores basada en optimización / Development of a methodology for the analysis and forecasting for st,"
Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 10(2), pages 129-162, julio-dic.
Handle:
RePEc:sfr:efruam:v:10:y:2020:i:2:p:129-162
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:10:y:2020:i:2:p:129-162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.