IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2020i3p81-91.html
   My bibliography  Save this article

Развитие рынка криптовалют: метод Херста // Cryptocurrency Market Development: Hurst Method

Author

Listed:
  • A. Mikhailov Yu.

    (Financial University)

  • А. Михайлов Ю.

    (Финансовый университет)

Abstract

The aim of this work is to study the pricing in the cryptocurrency market and applying cryptocurrencies by the Bank of Russia for its monetary policy. The research objectives are to identify the cyclical nature of price dynamics, to study market maturity and potential risks that have a long-term positive relationship with the financial stability of the cryptocurrency market. The author uses the Hurst method with the Amihud illiquidity measure to study the resistance of four cryptocurrencies (Bitcoin, Litecoin, Ripple and Dash) and their evolution over the past five years. The study results in the author’s conclusion that the cryptocurrency market has entered a new stage of development, which means a reduced possibility to have excess profits when investing in the most liquid cryptocurrencies in the future. However, buying new high-risk tools provides opportunities for speculative income. The author concludes that illiquid cryptocurrencies exhibit strong inverse anti-persistence in the form of a low Hurst exponent. A trend investing strategy may help obtain abnormal profits in the cryptocurrency market. The Bank of Russia could partially apply digital currency to implement monetary policy, which would soften the business cycle and control the inflation. If Russia accepts the law ‘’On Digital Financial Assets’’ and legalizes cryptocurrencies after the economic crisis caused by the COVID-19 pandemic, the Bank of Russia might act as a lender of last resort and offer crypto loans. Целью данной работы является изучение ценообразования на рынке криптовалют и возможностей их применения Банком России при осуществлении своей монетарной политики. Задачи исследования: выявление цикличности динамики цен, изучение степени сформированности рынка и потенциальных рисков, имеющих долгосрочную положительную связь с финансовой стабильностью рынка криптовалют. Автор использует методы Херста с коэффициентом неликвидности Амихуда, чтобы изучить степень стойкости четырех криптовалют (BitCoin, LiteCoin, Ripple и Dash) и их эволюцию в течение последних пяти лет. В результате исследования автор выяснил, что рынок криптовалют вышел на новую стадию развития, что означает снижение возможности получения сверхнормальных доходов при инвестировании в наиболее ликвидные криптовалюты в будущем. Однако остаются возможности для получения спекулятивного дохода при покупке новых высокорискованных инструментов. Сделан вывод, что неликвидные криптовалюты проявляют сильную обратную антиперсистентность в виде низкого коэффициента Херста. Для получения аномальной прибыли на крипторынке может быть использована трендовая инвестиционная стратегия. Банк России мог бы частично применять цифровую валюту при осуществлении денежно-кредитной политики, что позволило бы смягчить деловой цикл и контролировать уровень инфляции. В случае принятия закона «О цифровых финансовых активах» и легализации криптовалют в России после экономического кризиса, вызванного пандемией Covid-19, Банк России мог бы действовать как кредитор последней инстанции, предлагая кредиты в криптовалюте.

Suggested Citation

  • A. Mikhailov Yu. & А. Михайлов Ю., 2020. "Развитие рынка криптовалют: метод Херста // Cryptocurrency Market Development: Hurst Method," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 24(3), pages 81-91.
  • Handle: RePEc:scn:financ:y:2020:i:3:p:81-91
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/1010/678.pdf
    Download Restriction: no

    File URL: https://financetp.fa.ru/jour/article/viewFile/1010/689.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Alberto Javarone & Craig Steven Wright, 2018. "From Bitcoin to Bitcoin Cash: a network analysis," Papers 1804.02350, arXiv.org, revised Jul 2018.
    2. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    3. Bergstrand, Jeffrey H, 1985. "The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence," The Review of Economics and Statistics, MIT Press, vol. 67(3), pages 474-481, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    2. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    3. Thomas L. Vollrath & Mark J. Gehlhar & Charles B. Hallahan, 2009. "Bilateral Import Protection, Free Trade Agreements, and Other Factors Influencing Trade Flows in Agriculture and Clothing," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 298-317, June.
    4. Nilanjan Banik & John Gilbert, 2010. "Regional Integration and Trade Costs in South Asia," Chapters, in: Douglas H. Brooks & Susan F. Stone (ed.), Trade Facilitation and Regional Cooperation in Asia, chapter 4, Edward Elgar Publishing.
    5. Lars Hornuf & Paul P. Momtaz & Rachel J. Nam & Ye Yuan, 2023. "Cybercrime on the Ethereum Blockchain," CESifo Working Paper Series 10598, CESifo.
    6. Timothy King & Dimitrios Koutmos & Francesco Saverio Stentella Lopes, 2021. "Cryptocurrency Mining Protocols: A Regulatory and Technological Overview," Palgrave Studies in Financial Services Technology, in: Timothy King & Francesco Saverio Stentella Lopes & Abhishek Srivastav & Jonathan Williams (ed.), Disruptive Technology in Banking and Finance, edition 1, chapter 0, pages 93-134, Palgrave Macmillan.
    7. Michele Fratianni & Francesco Marchionne, 2011. "The Limits to Integration," Chapters, in: Miroslav N. Jovanović (ed.), International Handbook on the Economics of Integration, Volume I, chapter 9, Edward Elgar Publishing.
    8. Joras Ferwerda & Mark Kattenberg & Han-Hsin Chang & Brigitte Unger & Loek Groot & Jacob A. Bikker, 2013. "Gravity models of trade-based money laundering," Applied Economics, Taylor & Francis Journals, vol. 45(22), pages 3170-3182, August.
    9. Peter Egger & Douglas Nelson, 2011. "How Bad Is Antidumping? Evidence from Panel Data," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1374-1390, November.
    10. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.
    11. Amita Batra, 2006. "India's Global Trade Potential: The Gravity Model Approach," Global Economic Review, Taylor & Francis Journals, vol. 35(3), pages 327-361.
    12. Jeffrey H. Bergstrand & Scott L. Baier, 2010. "An Evaluation of Swiss Free Trade Agreements Using Matching Econometrics," Aussenwirtschaft, University of St. Gallen, School of Economics and Political Science, Swiss Institute for International Economics and Applied Economics Research, vol. 65(3), pages 239-250, September.
    13. Ghatak, Subrata & Piperakis, Andromachi S., 2007. "The impact of Eastern European immigration to UK trade," Economics Discussion Papers 2007-3, School of Economics, Kingston University London.
    14. James E. Anderson, 2011. "The Gravity Model," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 133-160, September.
    15. David Law & Murat Genç & John Bryant, 2013. "Trade, Diaspora and Migration to New Zealand," The World Economy, Wiley Blackwell, vol. 36(5), pages 582-606, May.
    16. Markus Brueckner & Ngo Van Long & Joaquin L. Vespignani, 2020. "Non-Gravity Trade," Globalization Institute Working Papers 388, Federal Reserve Bank of Dallas.
    17. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    18. Corbet, Shaen & Cumming, Douglas J. & Lucey, Brian M. & Peat, Maurice & Vigne, Samuel A., 2020. "The destabilising effects of cryptocurrency cybercriminality," Economics Letters, Elsevier, vol. 191(C).
    19. Inmaculada Martínez-Zarzoso & Martina Vidovic & Anca M. Voicu, 2014. "EU-Accession Effects on Sectoral Trade: A Helpman-Melitz-Rubinstein Approach with Panel Data," CESifo Working Paper Series 4903, CESifo.
    20. Walid Hejazi, 2005. "Are Regional Concentrations of OECD Exports and Outward FDI Consistent with Gravity?," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 33(4), pages 423-436, December.

    More about this item

    Keywords

    Bitcoin; Litecoin; Dash; Ripple; monetary policy; liquidity; volatility; profitability; Hurst method; crypto loans; C72; D61; E42; C72; D61; E42; биткойн; лайткойн; даш; риппл; денежно-кредитная политика; ликвидность; волатильность; доходность; метод Херста; кредиты в криптовалюте;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2020:i:3:p:81-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.