IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2020i3p81-91.html
   My bibliography  Save this article

Развитие рынка криптовалют: метод Херста // Cryptocurrency Market Development: Hurst Method

Author

Listed:
  • A. Mikhailov Yu.

    (Financial University)

  • А. Михайлов Ю.

    (Финансовый университет)

Abstract

The aim of this work is to study the pricing in the cryptocurrency market and applying cryptocurrencies by the Bank of Russia for its monetary policy. The research objectives are to identify the cyclical nature of price dynamics, to study market maturity and potential risks that have a long-term positive relationship with the financial stability of the cryptocurrency market. The author uses the Hurst method with the Amihud illiquidity measure to study the resistance of four cryptocurrencies (Bitcoin, Litecoin, Ripple and Dash) and their evolution over the past five years. The study results in the author’s conclusion that the cryptocurrency market has entered a new stage of development, which means a reduced possibility to have excess profits when investing in the most liquid cryptocurrencies in the future. However, buying new high-risk tools provides opportunities for speculative income. The author concludes that illiquid cryptocurrencies exhibit strong inverse anti-persistence in the form of a low Hurst exponent. A trend investing strategy may help obtain abnormal profits in the cryptocurrency market. The Bank of Russia could partially apply digital currency to implement monetary policy, which would soften the business cycle and control the inflation. If Russia accepts the law ‘’On Digital Financial Assets’’ and legalizes cryptocurrencies after the economic crisis caused by the COVID-19 pandemic, the Bank of Russia might act as a lender of last resort and offer crypto loans. Целью данной работы является изучение ценообразования на рынке криптовалют и возможностей их применения Банком России при осуществлении своей монетарной политики. Задачи исследования: выявление цикличности динамики цен, изучение степени сформированности рынка и потенциальных рисков, имеющих долгосрочную положительную связь с финансовой стабильностью рынка криптовалют. Автор использует методы Херста с коэффициентом неликвидности Амихуда, чтобы изучить степень стойкости четырех криптовалют (BitCoin, LiteCoin, Ripple и Dash) и их эволюцию в течение последних пяти лет. В результате исследования автор выяснил, что рынок криптовалют вышел на новую стадию развития, что означает снижение возможности получения сверхнормальных доходов при инвестировании в наиболее ликвидные криптовалюты в будущем. Однако остаются возможности для получения спекулятивного дохода при покупке новых высокорискованных инструментов. Сделан вывод, что неликвидные криптовалюты проявляют сильную обратную антиперсистентность в виде низкого коэффициента Херста. Для получения аномальной прибыли на крипторынке может быть использована трендовая инвестиционная стратегия. Банк России мог бы частично применять цифровую валюту при осуществлении денежно-кредитной политики, что позволило бы смягчить деловой цикл и контролировать уровень инфляции. В случае принятия закона «О цифровых финансовых активах» и легализации криптовалют в России после экономического кризиса, вызванного пандемией Covid-19, Банк России мог бы действовать как кредитор последней инстанции, предлагая кредиты в криптовалюте.

Suggested Citation

  • A. Mikhailov Yu. & А. Михайлов Ю., 2020. "Развитие рынка криптовалют: метод Херста // Cryptocurrency Market Development: Hurst Method," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 24(3), pages 81-91.
  • Handle: RePEc:scn:financ:y:2020:i:3:p:81-91
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/1010/678.pdf
    Download Restriction: no

    File URL: https://financetp.fa.ru/jour/article/viewFile/1010/689.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Alberto Javarone & Craig Steven Wright, 2018. "From Bitcoin to Bitcoin Cash: a network analysis," Papers 1804.02350, arXiv.org, revised Jul 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiaolin & Ma, Chaoqun & Ren, Yi-Shuai & Baltas, Konstantinos & Narayan, Seema, 2024. "A comparative analysis of the price explosiveness in Bitcoin and forked coins," Finance Research Letters, Elsevier, vol. 61(C).
    2. Chengyi Tu & Paolo DOdorico & Samir Suweis, 2018. "Critical slowing down associated with critical transition and risk of collapse in cryptocurrency," Papers 1806.08386, arXiv.org, revised Nov 2019.
    3. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    4. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    5. Lin, Jian-Hong & Marchese, Emiliano & Tessone, Claudio J. & Squartini, Tiziano, 2022. "The weighted Bitcoin Lightning Network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.

    More about this item

    Keywords

    Bitcoin; Litecoin; Dash; Ripple; monetary policy; liquidity; volatility; profitability; Hurst method; crypto loans; C72; D61; E42; C72; D61; E42; биткойн; лайткойн; даш; риппл; денежно-кредитная политика; ликвидность; волатильность; доходность; метод Херста; кредиты в криптовалюте;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2020:i:3:p:81-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.